Skip to main content

Sol–Gel Silica-Based Biomaterials and Bone Tissue Regeneration

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

The clinical treatment of many bone diseases and trauma requires a biomaterial behaving as scaffold that guides and favors the bone tissue regeneration. This is the main application of a family of silica-based glasses developed in the 1970s, denoted as bioactive because they are able to bond with bone. The beneficial effect of porosity and a surface rich in silanol groups in the bioactive response of glasses pushed in the 1990s to the synthesis of bioactive glasses by sol–gel. Gel-derived glasses exhibited an enhanced bioactive response and were suitable to process into fibers or coatings. A further improvement in the field took place in the 2000s when supramolecular chemistry principles were combined with sol–gel processing. The use of surfactants allowed obtaining glasses with ordered mesoporosity. Mesoporous bioactive glasses exhibited quicker bioactive response and great pore volumes able to host bone inductive substances. These glasses, processed into scaffolds with hierarchical porosity, including interconnected macroporosity, and enriched with different inorganic ions with therapeutical activity, are widely investigated because they are considered a promising tool in bone regenerative therapies. This chapter collects the state of the art and future trends of bioactive silica-based glasses for bone tissue regeneration applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arcos D, Vallet-Regí M. Sol–gel silica-based biomaterials and bone tissue regeneration. Biomaterials. 2010;6:2874–88.

    Google Scholar 

  • Baeza A, Manzano M, Colilla M, Vallet-Regí M. Recent advances in mesoporous silica nanoparticles for antitumor therapy: our contribution. Biomater Sci. 2016;4:803–13.

    Article  Google Scholar 

  • Bordi C, Bentzmann S. Hacking into bacterial biofilms: a new therapeutic challenge. Ann Intensive Care. 2011;1:19.

    Article  Google Scholar 

  • Brinker CJ, Lu Y, Sellinger A, Fan H. Evaporation-induced self-assembly: nanostructures made easy. Adv Mater. 1999;11:579–85.

    Article  Google Scholar 

  • Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309–19.

    Article  Google Scholar 

  • Doadrio AL, Salinas AJ, Sánchez-Montero JM, Vallet-Regí M. Drug release from ordered mesoporous silicas. Curr Pharm Des. 2015;21:6213–819.

    Article  Google Scholar 

  • Hench LL. Bioceramics – from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.

    Article  Google Scholar 

  • Hench LL, Splinter RJ, Greenlee TK, Allen WC. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res. 1971;2:117–41.

    Article  Google Scholar 

  • Hoppe A, Gueldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass. Ceramics. 2011;32:2757–74.

    Google Scholar 

  • Izquierdo-Barba I, Arcos D, Sakamoto Y, Terasaki O, López-Noriega A, Vallet-Regí M. High-performance mesoporous bioceramics mimicking bone mineralization. Chem Mater. 2008;20:3191–8.

    Article  Google Scholar 

  • Izquierdo-Barba I, Salinas AJ, Vallet-Regí M. Bioactive glasses: from macro to nano. Int J Appl Glass Sci. 2013;4:149–61.

    Article  Google Scholar 

  • Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass–ceramic A–W. J Biomed Mater Res. 1990;24:721–4.

    Article  Google Scholar 

  • Li R, Clark AE, Hench LL. An investigation of bioactive glass powders by sol-gel processing. J Appl Biomater. 1991;2:231–9.

    Article  Google Scholar 

  • López-Noriega A, Arcos D, Izquierdo-Barba I, Sakamoto Y, Terasaki O, Vallet-Regí M. Ordered mesoporous bioactive glasses for bone tissue regeneration. Chem Mater. 2006;18:3137–44.

    Article  Google Scholar 

  • Salinas AJ, Vallet-Regí M. The sol–gel production of biomaterials. Key Eng Mater. 2009;391:141–58.

    Article  Google Scholar 

  • Salinas AJ, Vallet-Regí M. Glasses in bone regeneration: a multiscale issue. J Non Cryst Solids. 2016;432:9–14.

    Article  Google Scholar 

  • Salinas AJ, Martín AI, Vallet-Regí M. Bioactivity of three CaO–P2O5–SiO2 sol– gel glasses. J Biomed Mater Res. 2002;61:524–32.

    Article  Google Scholar 

  • Salinas AJ, Shruti S, Malavasi G, Menabue L, Vallet-Regí M. Substitution of cerium, gallium and zinc in ordered mesoporous bioactive glasses. Acta Biomater. 2011;7:3452–8.

    Article  Google Scholar 

  • Sanchez-Salcedo S, Shruti S, Salinas AJ, Malavasi G, Menabue L, Vallet-Regí M. In vitro antibacterial capacity and cytocompatibility of SiO2–CaO–P2O5 meso-macroporous glass scaffolds enriched with ZnO. J Mater Chem B. 2014;2:4836–47.

    Article  Google Scholar 

  • Shruti S, Salinas AJ, Lusvardi G, Malavasi G, Menabue L, Vallet-Regí M. Mesoporous bioactive scaffolds prepared with cerium-, gallium- and zinc-containing glasses. Acta Biomater. 2013a;9:4836–44.

    Article  Google Scholar 

  • Shruti S, Salinas AJ, Ferrari E, Malavasi G, Lusvardi G, Doadrio AL, Menabue L, Vallet-Regí M. Curcumin release from cerium, gallium and zinc containing mesoporous bioactive glasses. Microporous Mesoporous Mater. 2013b;180:92–101.

    Article  Google Scholar 

  • Vallet-Regí M. Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chem – Eur J. 2006;12:5934–43.

    Article  Google Scholar 

  • Vallet-Regí M, Ragel CV, Salinas AJ. Glasses with medical applications. Eur J Inorg Chem. 2003;6:1029–42.

    Article  Google Scholar 

  • Vallet-Regí M, Salinas AJ, Ramírez-Castellanos J, González-Calbet JM. Nanostructure of bioactive sol-gel glasses and organic-inorganic hybrids. Chem Mater. 2005;17:1874–9.

    Article  Google Scholar 

  • Wu C, Chang J. Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J Control Release. 2014;193:282–95.

    Article  Google Scholar 

  • Yan XX, Yu CZ, Zhou XF, Tang JW, Zhao DY. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew Chem Int Ed. 2004;43:5980–4.

    Article  Google Scholar 

  • Yeong WY, Chua CK, Leong KF, Chandrasekaran M. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 2004;22:643–52.

    Article  Google Scholar 

  • Zhang J, Zhao S, Zhu Y, Huang Y, Zhu M, Tao C, Zhang C. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta Biomater. 2014;10:2269–81.

    Article  Google Scholar 

Download references

Acknowledgments

The authors deny any conflicts of interest. This study was supported by research grants from the Ministerio de Economía y Competitividad, project MAT2015-64831-R, European Research Council (ERC-2015-AdG), Advanced Grant Verdi-694160, Agening Network of Excellence (CSO2010-11384-E), and Instituto de Salud Carlos III (PI15/00978).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Vallet-Regí .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Vallet-Regí, M., Salinas, A.J. (2016). Sol–Gel Silica-Based Biomaterials and Bone Tissue Regeneration. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_152-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_152-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics