Skip to main content
Log in

Ionization-induced annealing of defects in 3C–SiC: Ion channeling and positron annihilation spectroscopy investigations

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

There is a growing interest in ionization-induced defect recovery in intermediate energy (a few 100s of keV to a few 10 s of MeV) regime, where ionization and defect production occur simultaneously. In the present work, damage recovery from ion irradiation in the intermediate energy regime is studied by conducting two-step ion irradiation in 3C–SiC. The first step involves low-energy ion irradiation using 200 keV Si+ ions to promote defect production. Subsequently, the samples are irradiated with 14 MeV Si+ ions, which predominantly lose energy by electronic stopping power. Rutherford backscattering spectrometry/channeling (RBS/C) spectra results reveal that upon 200 keV Si+ ion irradiation, an amorphous layer is formed at 0.6dpa; however, with sequential ion irradiation, the backscattering yield at the peak damage region decreased significantly, indicating damage recovery. The results are also consistent with the positron beam studies where recovery is evident by the decrease in S-parameter at the peak damage region.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. C.R. Eddy, D.K. Gaskill, Silicon carbide as a platform for power electronics. Science 324(5933), 1398 (2009)

    Article  CAS  Google Scholar 

  2. J.B. Casady, R.W. Johnson, Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. High-Temp. Electron. 39(96), 511 (1998)

    Google Scholar 

  3. S. Castelletto, B.C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, T. Ohshima, A silicon carbide room-temperature single-photon source. Nat. Mater. 12(11), 1 (2013)

    Google Scholar 

  4. L. Liu, A. Liu, S. Bai, L. Lv, P. Jin, X. Ouyang, Radiation resistance of silicon carbide Schottky diode detectors in D-T fusion neutron detection. Sci. Rep. 7(1), 1 (2017)

    Google Scholar 

  5. L.L. Snead, K.A. Terrani, Y. Katoh, C. Silva, K.J. Leonard, Stability of SiC-matrix microencapsulated fuel constituents at relevant LWR conditions. J. Nucl. Mater. 448(1–3), 389 (2014)

    Article  CAS  Google Scholar 

  6. L.L. Snead, T. Nozawa, Y. Katoh, T.S. Byun, S. Kondo, D.A. Petti, Handbook of SiC properties for fuel performance modeling. J. Nucl. Mater. 371(1–3), 329 (2007)

    Article  CAS  Google Scholar 

  7. L.L. Snead, J.C. Hay, Neutron irradiation induced amorphization of silicon carbide. J. Nucl. Mater. 273(2), 213 (1999)

    Article  CAS  Google Scholar 

  8. S. Zhang, Y. Yang, H. Liu, H. Chen, X. Li, D. Liu, F. Zhu, Z. Liu, Y. Cheng, Investigation of the recovery behavior of irradiation defects induced by a neutron in 4H-SiC combining Raman scattering and lattice parameters. J. Mater. Res. 37(18), 2910 (2022)

    Article  CAS  Google Scholar 

  9. Y. Liu, G. Wang, S. Wang, J. Yang, L. Chen, X. Qin, B. Song, B. Wang, X. Chen, Defect-induced magnetism in neutron irradiated 6H-SiC single crystals. Phys. Rev. Lett. 106(8), 17 (2011)

    Article  Google Scholar 

  10. H. Inui, H. Mori, A. Suzuki, H. Fujita, Electron-irradiation-induced crystalline-to-amorphous transition in β-sic single crystals. Philos. Mag. B 65(1), 1 (1992)

    Article  CAS  Google Scholar 

  11. A. Debelle, L. Thomé, D. Dompoint, A. Boulle, F. Garrido, J. Jagielski, D. Chaussende, Characterization and modelling of the ion-irradiation induced disorder in 6H-SiC and 3C-SiC single crystals. J. Phys. D 43(45), 455408 (2010)

    Article  Google Scholar 

  12. L.B. Bayu Aji, E. Stavrou, J.B. Wallace, A. Boulle, A. Debelle, S.O. Kucheyev, Comparative study of radiation defect dynamics in 3C-SiC by X-ray diffraction, Raman scattering, and ion channeling. Appl. Phys. A 125(1), 1 (2019)

    Article  CAS  Google Scholar 

  13. A. Boulle, A. Debelle, J.B. Wallace, L.B.B. Aji, S.O. Kucheyev, The amorphization of 3C-SiC irradiated at moderately elevated temperatures as revealed by X-ray diffraction. Acta Mater. 140, 250 (2017). https://doi.org/10.1016/j.actamat.2017.08.030

    Article  CAS  Google Scholar 

  14. L. Zhang, W. Jiang, C. Pan, R.C. Fadanelli, W. Ai, L. Chen, T. Wang, Raman study of amorphization in nanocrystalline 3C–SiC irradiated with C+ and He+ ions. J. Raman Spectrosc. 50(8), 1197 (2019)

    Article  CAS  Google Scholar 

  15. S. Sorieul, J.M. Costantini, L. Gosmain, L. Thomé, J.J. Grob, Raman spectroscopy study of heavy-ion-irradiated α-SiC. J. Phys. Condens. Matter. 18(22), 5235 (2006)

    Article  CAS  Google Scholar 

  16. M. Toulemonde, Nanometric phase transformation of oxide materials under GeV energy heavy ion irradiation. Nucl. Instrum. Methods Phys. Res. B 156(1), 1 (1999)

    Article  CAS  Google Scholar 

  17. A. Debelle, M. Backman, L. Thomé, K. Nordlund, F. Djurabekova, W.J. Weber, I. Monnet, O.H. Pakarinen, F. Garrido, F. Paumier, Swift heavy ion induced recrystallization in cubic silicon carbide: new insights from designed experiments and MD simulations. Nucl. Instrum. Methods Phys. Res. B 326, 326 (2014)

    Article  CAS  Google Scholar 

  18. A. Debelle, M. Backman, L. Thomé, W.J. Weber, M. Toulemonde, S. Mylonas, A. Boulle, O.H. Pakarinen, N. Juslin, F. Djurabekova, K. Nordlund, F. Garrido, D. Chaussende, Combined experimental and computational study of the recrystallization process induced by electronic interactions of swift heavy ions with silicon carbide crystals. Phys. Rev. B 86(10), 2 (2012)

    Article  Google Scholar 

  19. W.J. Weber, D.M. Duffy, L. Thomé, Y. Zhang, The role of electronic energy loss in ion beam modification of materials. Curr. Opin. Solid State Mater. Sci. 19(1), 1 (2015)

    Article  CAS  Google Scholar 

  20. S.M. Tunhuma, M. Diale, J.M. Nel, M.J. Madito, T.T. Hlatshwayo, F.D. Auret, Defects in swift heavy ion irradiated n-4H-SiC. Nucl. Instrum. Methods Phys. Res. B 460, 119 (2019)

    Article  CAS  Google Scholar 

  21. S. Sorieul, X. Kerbiriou, J.M. Costantini, L. Gosmain, G. Calas, C. Trautmann, Optical spectroscopy study of damage induced in 4H-SiC by swift heavy ion irradiation. J. Phys. Condens. Matter. 24(12), 125801 (2012)

    Article  CAS  Google Scholar 

  22. M. Backman, M. Toulemonde, O.H. Pakarinen, N. Juslin, F. Djurabekova, K. Nordlund, A. Debelle, W.J. Weber, Molecular dynamics simulations of swift heavy ion induced defect recovery in SiC. Comput. Mater. Sci. 67, 261 (2013)

    Article  CAS  Google Scholar 

  23. A. Benyagoub, Irradiation effects induced in silicon carbide by low and high energy ions. Nucl. Instrum. Methods Phys. Res. B 266(12–13), 2766 (2008)

    Article  CAS  Google Scholar 

  24. A. Audren, I. Monnet, D. Gosset, Y. Leconte, X. Portier, L. Thomé, F. Garrido, A. Benyagoub, M. Levalois, N. Herlin-Boime, C. Reynaud, Effects of electronic and nuclear interactions in SiC. Nucl. Instrum. Methods Phys. Res. B 267(6), 976–979 (2009)

    Article  CAS  Google Scholar 

  25. S.J. Zinkle, V.A. Skuratov, D.T. Hoelzer, On the conflicting roles of ionizing radiation in ceramics. Nucl. Instrum. Methods Phys. Res. B 191(1–4), 758 (2002)

    Article  CAS  Google Scholar 

  26. Y. Zhang, R. Sachan, O.H. Pakarinen, M.F. Chisholm, P. Liu, H. Xue, W.J. Weber, Ionization-induced annealing of pre-existing defects in silicon carbide. Nat. Commun. 6, 1 (2015)

    Google Scholar 

  27. W.J. Weber, L. Wang, Y. Zhang, W. Jiang, I.T. Bae, Effects of dynamic recovery on amorphization kinetics in 6H-SiC. Nucl. Instrum. Methods Phys. Res. B 266(12–13), 2793 (2008)

    Article  CAS  Google Scholar 

  28. A.M. Rutherford, D.M. Duffy, The effect of electron-ion interactions on radiation damage simulations. J. Phys. Condens. Matter. 19(49), 496201 (2007)

    Article  Google Scholar 

  29. D.M. Duffy, A.M. Rutherford, Including the effects of electronic stopping and electron-ion interactions in radiation damage simulations. J. Phys. Condens. Matter. 19(1), 016207 (2007)

    Article  Google Scholar 

  30. M. Backman, F. Djurabekova, O.H. Pakarinen, K. Nordlund, Y. Zhang, M. Toulemonde, W.J. Weber, Atomistic simulations of MeV ion irradiation of silica. Nucl. Instrum. Methods Phys. Res. B 303, 129 (2013)

    Article  CAS  Google Scholar 

  31. M.W. Ullah, N. Sellami, A. Leino, H. Bei, Y. Zhang, W.J. Weber, Electron-phonon coupling induced defect recovery and strain relaxation in Ni and equiatomic NiFe alloy. Comput. Mater. Sci. 173, 109394 (2020)

    Article  CAS  Google Scholar 

  32. S.L. Daraszewicz, D.M. Duffy, Hybrid continuum-atomistic modelling of swift heavy ion radiation damage in germanium. Nucl. Instrum. Methods Phys. Res. B 303, 112 (2013)

    Article  CAS  Google Scholar 

  33. D.M. Duffy, S.L. Daraszewicz, J. Mulroue, Modelling the effects of electronic excitations in ionic-covalent materials. Nucl. Instrum. Methods Phys. Res. B 277, 21 (2012)

    Article  CAS  Google Scholar 

  34. W.J. Weber, H. Xue, E. Zarkadoula, Y. Zhang, Two regimes of ionization-induced recovery in SrTiO3 under irradiation. Scr. Mater. 173, 154 (2019)

    Article  CAS  Google Scholar 

  35. G. Velişa, E. Wendler, H. Xue, Y. Zhang, W.J. Weber, Revealing ionization-induced dynamic recovery in ion-irradiated SrTiO3. Acta Mater. 149, 256 (2018)

    Article  Google Scholar 

  36. L. Thomé, G. Gutierrez, I. Monnet, F. Garrido, A. Debelle, Ionization-induced annealing in silicon upon dual-beam irradiation. J. Mater. Sci. 55(14), 5938 (2020)

    Article  Google Scholar 

  37. L. Nuckols, M.L. Crespillo, C. Xu, E. Zarkadoula, Y. Zhang, W.J. Weber, Coupled effects of electronic and nuclear energy deposition on damage accumulation in ion-irradiated SiC. Acta Mater. 199, 96 (2020)

    Article  CAS  Google Scholar 

  38. Y. Zhang, H. Xue, E. Zarkadoula, R. Sachan, C. Ostrouchov, P. Liu, X. Lin Wang, S. Zhang, T.S. Wang, W.J. Weber, Coupled electronic and atomic effects on defect evolution in silicon carbide under ion irradiation. Curr. Opin. Solid State Mater. Sci. 21(6), 285 (2017)

    Article  CAS  Google Scholar 

  39. L. Thomé, G. Velisa, S. Miro, A. Debelle, F. Garrido, G. Sattonnay, S. Mylonas, P. Trocellier, Y. Serruys, Recovery effects due to the interaction between nuclear and electronic energy losses in SiC irradiated with a dual-ion beam. J. Appl. Phys. 117(10), 1 (2015)

    Article  Google Scholar 

  40. Y. Zhang, W. Jiang, C. Wang, F. Namavar, P.D. Edmondson, Z. Zhu, F. Gao, J. Lian, W.J. Weber, Grain growth and phase stability of nanocrystalline cubic zirconia under ion irradiation. Phys. Rev. B 82(18), 1 (2010)

    Article  Google Scholar 

  41. P.D. Edmondson, W.J. Weber, F. Namavar, Y. Zhang, Lattice distortions and oxygen vacancies produced in Au+- irradiated nanocrystalline cubic zirconia. Scr. Mater. 65(8), 675 (2011)

    Article  CAS  Google Scholar 

  42. Y. Zhang, D.S. Aidhy, T. Varga, S. Moll, P.D. Edmondson, F. Namavar, K. Jin, C.N. Ostrouchov, W.J. Weber, The effect of electronic energy loss on irradiation-induced grain growth in nanocrystalline oxides. Phys. Chem. Chem. Phys. 16(17), 8051 (2014)

    Article  CAS  Google Scholar 

  43. E. Zarkadoula, M. Toulemonde, W.J. Weber, Additive effects of electronic and nuclear energy losses in irradiation-induced amorphization of zircon. Appl. Phys. Lett. 107(26), 261902 (2015)

    Article  Google Scholar 

  44. E. Zarkadoula, Y. Zhang, W.J. Weber, Molecular dynamics simulations of the response of pre-damaged SrTiO3 and KTaO3 to fast heavy ions. AIP Adv. 10(1), 015019 (2020)

    Article  CAS  Google Scholar 

  45. K. Jin, Y. Zhang, W.J. Weber, Synergistic effects of nuclear and electronic energy deposition on damage production in KTaO3. Mater. Res. Lett. 6(9), 531 (2018)

    Article  CAS  Google Scholar 

  46. W.J. Weber, E. Zarkadoula, O.H. Pakarinen, R. Sachan, M.F. Chisholm, P. Liu, H. Xue, K. Jin, Y. Zhang, Synergy of elastic and inelastic energy loss on ion track formation in SrTiO3. Sci. Rep. (2015). https://doi.org/10.1038/srep07726

    Article  Google Scholar 

  47. X. Han, Y. Liu, M. Crespillo, E. Zarkadoula, Q. Huang, X. Wang, P. Liu, Latent tracks in ion-irradiated LiTaO3 crystals: spike analysis. Crystals 10, 877 (2020)

    Article  CAS  Google Scholar 

  48. H. Xue, Y. Zhang, W.J. Weber, In-cascade ionization effects on defect production in 3C silicon carbide*. Mater. Res. Lett. 5(7), 494 (2017)

    Article  CAS  Google Scholar 

  49. A. Chakravorty, B. Singh, H. Jatav, S. Ojha, J. Singh, D. Kanjilal, D. Kabiraj, Intense ionizing irradiation-induced atomic movement toward recrystallization in 4H-SiC. J. Appl. Phys. 128(16), 165901 (2020)

    Article  CAS  Google Scholar 

  50. A. Debelle, L. Thomé, I. Monnet, F. Garrido, O.H. Pakarinen, W.J. Weber, Ionization-induced thermally activated defect-annealing process in SiC. Phys. Rev. Mater. 3(6), 1 (2019)

    Google Scholar 

  51. D. Guo, H. Gong, L. Li, J. Wen, Y. Xie, Q. Ren, Y. Liao, T. Liu, Ionization-induced defect annealing by fission product ions in SiC and its implication for UO2-SiC composite fuels. J. Nucl. Mater. 560, 153474 (2022)

    Article  CAS  Google Scholar 

  52. M. Posselt, F. Gao, W.J. Weber, V. Belko, A comparative study of the structure and energetics of elementary defects in 3C- and 4H-SiC. J. Phys. Condens. Matter. 16(8), 1307 (2004)

    Article  CAS  Google Scholar 

  53. D.N. Fakultäten, A. Mattausch, Ab initio -theory of point defects and defect complexes in SiC. (n.d.)

  54. J. Wiktor, X. Kerbiriou, G. Jomard, S. Esnouf, M.F. Barthe, M. Bertolus, Positron annihilation spectroscopy investigation of vacancy clusters in silicon carbide: combining experiments and electronic structure calculations. Phys. Rev. B 89(15), 1 (2014)

    Article  Google Scholar 

  55. X. Kerbiriou, M.F. Barthe, S. Esnouf, P. Desgardin, G. Blondiaux, E. Balanzat, Vacancy defects induced in the track region of 132 MeV 12C irradiated SiC. Nucl. Instrum. Methods Phys. Res. B 250(1–2), 259 (2006)

    Article  CAS  Google Scholar 

  56. X. Kerbiriou, M.F. Barthe, S. Esnouf, P. Desgardin, G. Blondiaux, G. Petite, Vacancy defects induced by low energy electron irradiation in 6H and 3C-SiC monocrystals characterized by positron annihilation spectroscopy and electron paramagnetic resonance. Mater. Sci. Forum 527–529, 571 (2006)

    Article  Google Scholar 

  57. X. Kerbiriou, M.F. Barthe, S. Esnouf, P. Desgardin, G. Blondiaux, G. Petite, Silicon displacement threshold energy determined by electron paramagnetic resonance and positron annihilation spectroscopy in cubic and hexagonal polytypes of silicon carbide. J. Nucl. Mater. 362(2–3), 202 (2007)

    Article  CAS  Google Scholar 

  58. W. Brandt, A. Dupasquier (eds.), Positron solid state physics (North-Holland, Amsterdam, 1983)

    Google Scholar 

  59. R.N. West, Positron studies of condensed matter. Adv. Phys. 22, 263 (1973). https://doi.org/10.1080/00018737300101299

    Article  CAS  Google Scholar 

  60. P.J. Schultz, K.G. Lynn, Interaction of positron beams with surfaces, thin films, and interfaces. Rev. Mod. Phys. 60(3), 701 (1988)

    Article  CAS  Google Scholar 

  61. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM: the stopping and range of ions in matter, version SRIM-2013. SRIM stopping range ions matter, version SRIM-2013 (n.d.)

  62. R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, F.A. Garner, On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res. B 310, 75 (2013)

    Article  CAS  Google Scholar 

  63. W.J. Weber, Y. Zhang, Predicting damage production in monoatomic and multi-elemental targets using stopping and range of ions in matter code: challenges and recommendations. Curr. Opin. Solid State Mater. Sci. 23(4), 100757 (2019)

    Article  CAS  Google Scholar 

  64. Y. Zhang, W.J. Weber, Ion irradiation and modification: the role of coupled electronic and nuclear energy dissipation and subsequent nonequilibrium processes in materials. Appl. Phys. Rev. 7(4), 041307 (2020)

    Article  CAS  Google Scholar 

  65. K. Nordlund, S.J. Zinkle, A.E. Sand, F. Granberg, R.S. Averback, R. Stoller, T. Suzudo, L. Malerba, F. Banhart, W.J. Weber, F. Willaime, S.L. Dudarev, D. Simeone, Improving atomic displacement and replacement calculations with physically realistic damage models. Nat. Commun. 9(1), 1 (2018)

    Article  CAS  Google Scholar 

  66. L.C. Feldman, J.W. Mayer, S.T. Picraux, Interaction of ion beams with surfaces, in Materials analysis by ion channeling. (Academic Press, New York, 1982), p.12

    Chapter  Google Scholar 

  67. K. Gärtner, Axial dechanneling in compound crystals with point defects and defect analysis by RBS. Nucl. Instrum. Methods Phys. Res. B 132(1), 147 (1997)

    Article  Google Scholar 

  68. E. Wendler, O. Bilani, K. Gärtner, W. Wesch, M. Hayes, F.D. Auret, K. Lorenz, E. Alves, Radiation damage in ZnO ion implanted at 15 K. Nucl. Instrum. Methods Phys. Res. B 267(16), 2708 (2009)

    Article  CAS  Google Scholar 

  69. J.B. Malherbe, Diffusion of fission products and radiation damage in SiC. J. Phys. D 46(47), 473001 (2013)

    Article  Google Scholar 

  70. Y. Katoh, N. Hashimoto, S. Kondo, L.L. Snead, A. Kohyama, Microstructural development in cubic silicon carbide during irradiation at elevated temperatures. J. Nucl. Mater. 351(1–3), 228 (2006)

    Article  CAS  Google Scholar 

  71. W. Jiang, W.J. Weber, C.M. Wang, Ion-beam-irradiation induced defects in gallium nitride. Nucl. Instrum. Methods Phys. Res. B 206, 1037 (2003)

    Article  CAS  Google Scholar 

  72. K. Kamalakkannan, C. Lakshmanan, R. Rajaraman, B. Sundaravel, G. Amarendra, K. Sivaji, Positron annihilation studies on N+ implantation induced vacancy type defects and its recovery in SI: 6H- SiC. Nucl. Instrum. Methods Phys. Res. B 504, 50 (2021)

    Article  CAS  Google Scholar 

  73. J. Wiktor, G. Jomard, M. Torrent, M.F. Barthe, M. Bertolus, Fully self-consistent calculations of momentum distributions of annihilating electron-positron pairs in SiC. Phys. Rev. B 93(19), 195207 (2016)

    Article  Google Scholar 

  74. A. van Veen, H. Schut, M. Clement, J.M.M. de Nijs, A. Kruseman, M.R. Ijpma, VEPFIT applied to depth profiling problems. Appl. Surf. Sci. 85(C), 216 (1995)

    Article  Google Scholar 

  75. M. Bockstedte, A. Mattausch, O. Pankratov, Ab initio study of the migration of intrinsic defects in 3C−SiC. Phys. Rev. B 68(20), 205201 (2003)

    Article  Google Scholar 

  76. A. Kawasuso, M. Yoshikawa, H. Itoh, T. Chiba, T. Higuchi, K. Betsuyaku, F. Redmann, R. Krause-Rehberg, Electron-positron momentum distributions associated with isolated silicon vacancies in 3C-SiC. Phys. Rev. B 72(4), 45204 (2005)

    Article  Google Scholar 

  77. S. Mantl, W. Triftshäuser, Defect annealing studies on metals by positron annihilation and electrical resitivity measurements. Phys. Rev. B 17(4), 1645 (1978)

    Article  CAS  Google Scholar 

  78. D.A. Perminov, A.P. Druzhkov, V.L. Arbuzov, Positron annihilation spectroscopy of the accumulation of vacancy defects in an aging Fe–Ni–Al alloy irradiated at 573 K. Phys. Met. Metallogr. 119(8), 741 (2018)

    Article  CAS  Google Scholar 

  79. R. Devanathan, W.J. Weber, F. Gao, Atomic scale simulation of defect production in irradiated 3C-SiC. J. Appl. Phys. 90(5), 2303 (2001)

    Article  CAS  Google Scholar 

  80. W.J. Weber, L.M. Wang, The temperature dependence of ion-beam-induced amorphization in β-SiC. Nucl. Instrum. Methods Phys. Res. B 106(1–4), 298 (1995)

    Article  CAS  Google Scholar 

  81. F. Gao, W.J. Weber, R. Devanathan, Defect production, multiple ion-solid interactions and amorphization in SiC. Nucl. Instrum. Methods Phys. Res. B 191(1–4), 487 (2002)

    Article  CAS  Google Scholar 

  82. N. Sreelakshmi, S. Amirthapandian, G.R. Umapathy, C. David, S.K. Srivastava, S. Ojha, B.K. Panigrahi, Raman scattering investigations on disorder and recovery induced by low and high energy ion irradiation on 3C-SiC. Mater. Sci. Eng. B 273, 115452 (2021)

    Article  CAS  Google Scholar 

  83. A. Kawasuso, H. Itoh, N. Morishita, M. Yoshikawa, T. Ohshima, I. Nashiyama, S. Okada, H. Okumura, S. Yoshida, Silicon vacancies in 3C-SiC observed by positron lifetime and electron spin resonance. Appl. Phys. A 67(2), 209 (1998)

    Article  CAS  Google Scholar 

  84. L. Nuckols, M.L. Crespillo, Y. Yang, J. Li, E. Zarkadoula, Y. Zhang, W.J. Weber, Effects of recoil spectra and electronic energy dissipation on defect survival in 3C-SiC. Materialia 15, 101023 (2021)

    Article  CAS  Google Scholar 

  85. C. David, S. Abhaya, B. Sundaravel, K.G.M. Nair, B.K. Panigrahi, G. Amarendra, The production of non linear damage under molecular ion implantation. Nucl. Instrum. Methods Phys. Res. B 266(8), 1252 (2008)

    Article  CAS  Google Scholar 

  86. Y. Zhang, W.J. Weber, W. Jiang, C.M. Wang, A. Hallén, G. Possnert, Effects of implantation temperature and ion flux on damage accumulation in Al-implanted 4H-SiC. J. Appl. Phys. 93(4), 1954 (2003)

    Article  CAS  Google Scholar 

  87. Y. Zhang, W.J. Weber, W. Jiang, A. Hallén, G. Possnert, Damage evolution and recovery on both Si and C sublattices in Al-implanted 4H-SiC studied by Rutherford backscattering spectroscopy and nuclear reaction analysis. J. Appl. Phys. 91(10 I), 6388 (2002)

    Article  CAS  Google Scholar 

  88. Y. Zhang, W.J. Weber, W. Jiang, C.M. Wang, V. Shutthanandan, A. Hallén, Effects of implantation temperature on damage accumulation in Al-implanted 4H-SiC. J. Appl. Phys. 95(8), 4012 (2004)

    Article  CAS  Google Scholar 

  89. Z. Rong, F. Gao, W.J. Weber, G. Hobler, Monte Carlo simulations of defect recovery within a 10 keV collision cascade in 3C-SiC. J. Appl. Phys. 102(10), 103508 (2007)

    Article  Google Scholar 

  90. G. Amarendra, B. Viswanathan, G. Venugopal Rao, J. Parimala, B. Purniah, Variable low energy positron beams for depth resolved defect spectroscopy in thin film structures. Curr. Sci. 73(5), 409 (1997)

    CAS  Google Scholar 

  91. R. Krause-Rehberg, H.S. Leipner, Positron annihilation in semiconductors: defect studies (Springer, Berlin, 1999)

    Book  Google Scholar 

Download references

Acknowledgments

One of the authors (Sreelakshmi) thanks the Department of Atomic Energy (DAE), India, for financial support in the form of a fellowship. We acknowledge Dr. R. Rajaraman, MSG, IGCAR for his useful discussion on PAS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Amirthapandian.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8016 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreelakshmi, N., Umapathy, G.R., Abhaya, S. et al. Ionization-induced annealing of defects in 3C–SiC: Ion channeling and positron annihilation spectroscopy investigations. Journal of Materials Research 38, 1349–1363 (2023). https://doi.org/10.1557/s43578-023-00894-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00894-1

Keywords

Navigation