Skip to main content
Log in

Stretchable Polymeric Neural Electrode Array: Toward a Reliable Neural Interface

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Conducting polymers are often employed as coatings on smooth metal electrodes to improve the electrode performance with respect to the signal-to-noise ratio for neural recording, charge-injection capacity for neural stimulation, and inducement of neural growth for electrode-tissue integration. However, adhesion of conducting polymer coatings on metal electrodes is poor, making the coating less durable and the electrical property of the electrode less stable. Moreover, conventional conducting polymers have relative low conductance, preventing their direct use as the electrode and lead material; and they are brittle, making it difficult for flexible neural electrodes to incorporate conducting polymer coatings. We have developed a new polypyrrole/polyol-borate composite film with concurrent excellent electrical and mechanical properties. We further developed a method to fabricate a stretchable multielectrode array using this new material as the sole conductor for both electrodes and leads, in contrast with the conventional approach of incorporating conducting polymers only through coating on non-stretchable metal electrodes. The resulting stretchable polymeric multielectrode array (SPMEA) was stretchable up to 23% uniaxial tensile strain with minimal losses in electrical conductivity. Electrochemical testing revealed the SPMEA’s impressive advantage for recording local field neural potentials and for epimysial stimulation of denervated skeletal muscles. As a neural interface engineer, I would also like to compare the compliant neural interfacing technology to other technologies, such as optogenetics, radiogenetics, and even a living neural interface that is currently under development in our lab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “Advisory Committee to the NIH Director INTERIM REPORT, Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Working Group,” National Institutes of Health, September 16, 2013 2013.

  2. B. He, T. Coleman, G. M. Genin, G. Glover, X. Hu, N. Johnson, et al., IEEE Trans. on Biomed. Eng., vol. 60, 2013.

  3. K. Birmingham, V. Gradinaru, P. Anikeeva, W. M. Grill, V. Pikov, B. McLaughlin, et al., Nature Reviews Drug Discovery, vol. 13, pp. 399–400, 2014.

    Article  CAS  Google Scholar 

  4. H. Markram, Scientific American, vol. 306, pp. 50–55, 2012.

    Article  Google Scholar 

  5. D. C. Van Essen, K. Ugurbil, E. Auerbach, D. Barch, T. Behrens, R. Bucholz, et al., Neuroimage, vol. 62, pp. 2222–2231, 2012.

    Article  Google Scholar 

  6. J. Banks, Pulse, IEEE, vol. 6, pp. 10–15, 2015.

    Article  Google Scholar 

  7. M. Maghribi, J. Hamilton, D. Polla, K. Rose, T. Wilson, and P. Krulevitch, in Microtechnologies in Medicine & Biology 2nd Annual International IEEE-EMB Special Topic Conference on, 2002, pp. 80–83.

  8. S. P. Lacour, C. Tsay, S. Wagner, Z. Yu, and B. Morrison, in Sensors, 2005 IEEE, 2005, p. 4 pp.

  9. L. Xu, S. R. Gutbrod, A. P. Bonifas, Y. Su, M. S. Sulkin, N. Lu, et al., Nature communications, vol. 5, 2014.

  10. D.-H. Kim, J. Viventi, J. J. Amsden, J. Xiao, L. Vigeland, Y.-S. Kim, et al., Nature materials, vol. 9, pp. 511–517, 2010.

    Article  CAS  Google Scholar 

  11. L. Guo, G. S. Guvanasen, X. Liu, C. Tuthill, T. R. Nichols, and S. P. DeWeerth, IEEE Transactions on Biomedical Circuits and Systems, vol. 7, pp. 1–10, Feb 2013.

    Article  Google Scholar 

  12. N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, et al., Advanced Materials, vol. 21, pp. 3970–4004, 2009.

    Article  CAS  Google Scholar 

  13. G. B. Kim, P. Fattahi, and M. R. Abidian, Biomaterials Surface Science, pp. 539–565, 2013.

  14. L. Guo, M. Ma, N. Zhang, R. Langer, and D. G. Anderson, Adv Mater, vol. 26, pp. 1427–33, Mar 2014.

    Article  CAS  Google Scholar 

  15. K. C. Cheung, Biomedical microdevices, vol. 9, pp. 923–938, 2007.

    Article  Google Scholar 

  16. M. R. Abidian and D. C. Martin, Advanced Functional Materials, vol. 19, pp. 573–585, 2009.

    Article  CAS  Google Scholar 

  17. T. Ware, D. Simon, R. L. Rennaker, and W. Voit, Polymer Reviews, vol. 53, pp. 108–129, 2013.

    Article  CAS  Google Scholar 

  18. S. P. Lacour, S. Benmerah, E. Tarte, J. FitzGerald, J. Serra, S. McMahon, et al., Medical & biological engineering & computing, vol. 48, pp. 945–954, 2010.

    Article  Google Scholar 

  19. S. P. Lacour, D. Chan, S. Wagner, T. Li, and Z. Suo, Applied Physics Letters, vol. 88, p. 204103, 2006.

  20. L. Guo, K. W. Meacham, S. Hochman, and S. P. DeWeerth, IEEE Trans Biomed Eng, vol. 57, pp. 2485–94, Oct 2010.

    Article  Google Scholar 

  21. R. Ravichandran, S. Sundarrajan, J. R. Venugopal, S. Mukherjee, and S. Ramakrishna, Journal of the Royal Society Interface, vol. 7, pp. S559–S579, Oct 6 2010.

    Article  CAS  Google Scholar 

  22. R. A. Green, N. H. Lovell, G. G. Wallace, and L. A. Poole-Warren, Biomaterials, vol. 29, pp. 3393–3399, Aug-Sep 2008.

    Article  CAS  Google Scholar 

  23. N. K. Guimard, N. Gomez, and C. E. Schmidt, Progress in Polymer Science, vol. 32, pp. 876–921, Aug-Sep 2007.

    Article  CAS  Google Scholar 

  24. D. Khodagholy, T. Doublet, M. Gurfinkel, P. Quilichini, E. Ismailova, P. Leleux, et al., Advanced Materials, vol. 23, pp. H268–H272, 2011.

    Article  CAS  Google Scholar 

  25. T. D. Y. Kozai, N. B. Langhals, P. R. Patel, X. Deng, H. Zhang, K. L. Smith, et al., Nature materials, vol. 11, pp. 1065–1073, 2012.

    Article  CAS  Google Scholar 

  26. F. Keohan, X. F. Wei, A. Wongsarnpigoon, E. Lazaro, J. E. Darga, and W. M. Grill, Journal of Biomaterials Science, Polymer Edition, vol. 18, pp. 1057–1073, 2007.

    Article  CAS  Google Scholar 

  27. A. Blau, A. Murr, S. Wolff, E. Sernagor, P. Medini, G. Iurilli, et al., Biomaterials, vol. 32, pp. 1778–1786, 2011.

    Article  CAS  Google Scholar 

  28. M. M. Ma, L. Guo, D. G. Anderson, and R. Langer, Science, vol. 339, pp. 186–189, Jan 11 2013.

    Article  CAS  Google Scholar 

  29. I. Minev and S. Lacour, Applied Physics Letters, vol. 97, p. 043707, 2010.

    Article  CAS  Google Scholar 

  30. L. Guo, “High-density stretchable microelectrode arrays: An integrated technology platform for neural and muscular surface interfacing,” Georgia Institute of Technology, 2011.

  31. S. W. Hwang, J. K. Song, X. Huang, H. Cheng, S. K. Kang, B. H. Kim, et al., Advanced Materials, vol. 26, pp. 3905–3911, 2014.

    Article  CAS  Google Scholar 

  32. L. T. de Jonge, S. C. Leeuwenburgh, J. G. Wolke, and J. A. Jansen, Pharmaceutical research, vol. 25, pp. 2357–2369, 2008.

    Article  CAS  Google Scholar 

  33. D. G. Castner and B. D. Ratner, Surface Science, vol. 500, pp. 28–60, 2002.

    Article  CAS  Google Scholar 

  34. L. Kane-Maguire and G. Wallace, Synthetic metals, vol. 119, pp. 39–42, 2001.

    Article  CAS  Google Scholar 

  35. W. He and R. V. Bellamkonda, Biomaterials, vol. 26, pp. 2983–2990, 2005.

    Article  CAS  Google Scholar 

  36. D. Ateh, H. Navsaria, and P. Vadgama, Journal of the royal society interface, vol. 3, pp. 741–752, 2006.

    Article  CAS  Google Scholar 

  37. P. M. George, A. W. Lyckman, D. A. LaVan, A. Hegde, Y. Leung, R. Avasare, et al., Biomaterials, vol. 26, pp. 3511–3519, 2005.

    Article  CAS  Google Scholar 

  38. C. E. Schmidt, V. R. Shastri, J. P. Vacanti, and R. Langer, Proceedings of the National Academy of Sciences, vol. 94, pp. 8948–8953, 1997.

    Article  CAS  Google Scholar 

  39. A. Kotwal and C. E. Schmidt, Biomaterials, vol. 22, pp. 1055–1064, 2001.

    Article  CAS  Google Scholar 

  40. V. S. Polikov, P. A. Tresco, and W. M. Reichert, Journal of neuroscience methods, vol. 148, pp. 1–18, 2005.

    Article  Google Scholar 

  41. X. Cui, V. A. Lee, Y. Raphael, J. A. Wiler, J. F. Hetke, D. J. Anderson, et al., Journal of biomedical materials research, vol. 56, pp. 261–272, 2001.

    Article  CAS  Google Scholar 

  42. B. Tian, J. Liu, T. Dvir, L. Jin, J. H. Tsui, Q. Qing, et al., Nature materials, vol. 11, pp. 986–994, 2012.

    Article  CAS  Google Scholar 

  43. N. Gomez, J. Y. Lee, J. D. Nickels, and C. E. Schmidt, Advanced functional materials, vol. 17, pp. 1645–1653, 2007.

    Article  CAS  Google Scholar 

  44. D. A. LaVan, P. M. George, and R. Langer, Angewandte Chemie, vol. 115, pp. 1300–1303, 2003.

    Article  Google Scholar 

  45. H. Münstedt, Polymer, vol. 27, pp. 899–904, 1986.

    Article  Google Scholar 

  46. B. Sun, J. Jones, R. Burford, and M. Skyllas-Kazacos, Journal of materials Science, vol. 24, pp. 4024–4029, 1989.

    Article  CAS  Google Scholar 

  47. H. Huang, S. Delikanli, H. Zeng, D. M. Ferkey, and A. Pralle, Nature nanotechnology, vol. 5, pp. 602–606, 2010.

    Article  CAS  Google Scholar 

  48. C. Marin and E. Fernandez, Front Neuroeng, vol. 3, p. 8, 2010.

    Article  Google Scholar 

  49. L. Fenno, O. Yizhar, and K. Deisseroth, Annu Rev Neurosci, vol. 34, pp. 389–412, 2011.

    Article  CAS  Google Scholar 

  50. J. G. Bernstein, P. A. Garrity, and E. S. Boyden, Current opinion in neurobiology, vol. 22, pp. 61–71, 2012.

    Article  CAS  Google Scholar 

  51. J. Proft and N. Weiss, Communicative & integrative biology, vol. 5, pp. 227–229, 2012.

    Article  Google Scholar 

  52. A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, et al., ACS Nano, vol. 7, pp. 1850–66, Mar 26 2013.

    Article  CAS  Google Scholar 

  53. S. A. Stanley, J. E. Gagner, S. Damanpour, M. Yoshida, J. S. Dordick, and J. M. Friedman, Science, vol. 336, pp. 604–608, 2012.

    Article  CAS  Google Scholar 

  54. M. R. Rosen, P. R. Brink, I. S. Cohen, and R. B. Robinson, Cardiovascular Research, vol. 64, pp. 12–23, Oct 1 2004.

    Article  CAS  Google Scholar 

  55. T. K. Lu, A. S. Khalil, and J. J. Collins, Nature Biotechnology, vol. 27, pp. 1139–1150, Dec 2009.

    Article  CAS  Google Scholar 

  56. S. Mukherji and A. van Oudenaarden, Nature reviews. Genetics, vol. 10, pp. 859–71, Dec 2009.

    Article  CAS  Google Scholar 

  57. R. Langer and J. P. Vacanti, “Tissue Engineering,” Science, vol. 260, pp. 920–926, May 14 1993.

    CAS  Google Scholar 

  58. M. P. Daniels, B. T. Lowe, S. Shah, J. Ma, S. J. Samuelsson, B. Lugo, et al., Microsc Res Tech, vol. 49, pp. 26–37, Apr 1 2000.

    Article  CAS  Google Scholar 

  59. M. Das, J. W. Rumsey, C. A. Gregory, N. Bhargava, J. F. Kang, P. Molnar, et al., Neuroscience, vol. 146, pp. 481–8, May 11 2007.

    Article  CAS  Google Scholar 

  60. R. V. Bellamkonda, Biomaterials, vol. 27, pp. 3515–8, Jul 2006.

    CAS  Google Scholar 

  61. W. Daly, L. Yao, D. Zeugolis, A. Windebank, and A. Pandit, J R Soc Interface, vol. 9, pp. 202–21, Feb 7 2012.

    Article  CAS  Google Scholar 

  62. A. M. Taylor, M. Blurton-Jones, S. W. Rhee, D. H. Cribbs, C. W. Cotman, and N. L. Jeon, Nat Methods, vol. 2, pp. 599–605, Aug 2005.

    Article  CAS  Google Scholar 

  63. S. David and A. J. Aguayo, Science, vol. 214, pp. 931–933, 1981.

    Article  CAS  Google Scholar 

  64. P. R. Kennedy, Journal of Neuroscience Methods, vol. 29, pp. 181–193, Sep 1989.

    Article  CAS  Google Scholar 

  65. M. Benfey and A. J. Aguayo, Nature, vol. 296, pp. 150–152, 1982.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L. Stretchable Polymeric Neural Electrode Array: Toward a Reliable Neural Interface. MRS Online Proceedings Library 1795, 1–12 (2015). https://doi.org/10.1557/opl.2015.567

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2015.567

Navigation