Skip to main content
Log in

Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces

  • Special issue - Review
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Microelectrode arrays (MEAs) are designed to monitor and/or stimulate extracellularly neuronal activity. However, the biomechanical and structural mismatch between current MEAs and neural tissues remains a challenge for neural interfaces. This article describes a material strategy to prepare neural electrodes with improved mechanical compliance that relies on thin metal film electrodes embedded in polymeric substrates. The electrode impedance of micro-electrodes on polymer is comparable to that of MEA on glass substrates. Furthermore, MEAs on plastic can be flexed and rolled offering improved structural interface with brain and nerves in vivo. MEAs on elastomer can be stretched reversibly and provide in vitro unique platforms to simultaneously investigate the electrophysiological of neural cells and tissues to mechanical stimulation. Adding mechanical compliance to MEAs is a promising vehicle for robust and reliable neural interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adrega T, Lacour SP (2010) Stretchable conductors embedded in PDMS and patterned by photolithography: fabrication and electromechanical characterisation. J Micromech Microeng 20:055025

    Article  Google Scholar 

  2. Benmerah S et al (2009) Design and fabrication of neural implant with thick micro-channels based on flexible polymeric materials. Presented at the IEEE EMBS conference, Minneapolis

  3. Cheng I-C, Wagner S (2009) Overview of flexible electronics technology. In: Wong WS, Salleo A (eds) Flexible electronics—materials and applications. Springer, New York, pp 1–28

    Chapter  Google Scholar 

  4. Discher DE et al (2005) Cells feel and respond to the stiffness of their substrate. Science 310:1139–1143

    Article  CAS  PubMed  Google Scholar 

  5. Donaldson N et al (2008) Noise and selectivity of velocity-selective multi-electrode nerve cuffs. Med Biol Eng Comput 46:1005–1018

    Article  CAS  PubMed  Google Scholar 

  6. Edell DJ (1986) A peripheral nerve information transducer for amputees: long-term multichannel recordings from rabbit peripheral nerves. IEEE Trans Biomed Eng 33:203–214

    Article  CAS  PubMed  Google Scholar 

  7. Fejtl M (2006) On micro-electrode array revival: its development, sophistication of recording, and stimulation. In: Taketani M, Baudry M et al (eds) Advances in network electrophysiology. Using multi-electrode arrays. Springer, Berlin, pp 24–37

    Google Scholar 

  8. FitzGerald J et al (2008) Microchannels as axonal amplifiers. IEEE Trans Biomed Eng 55:1136–1146

    Article  PubMed  Google Scholar 

  9. FitzGerald J et al (2009) Microchannel electrodes for recording and stimulation: in vitro evaluation. IEEE Trans Biomed Eng 56:1524–1534

    Article  PubMed  Google Scholar 

  10. Fontaine D et al (2010) Anatomical location of effective deep brain stimulation electrodes in chronic cluster headache. Brain 133:1214–1223

    Article  PubMed  Google Scholar 

  11. Graudejus O et al (2009) Characterization of an elastically stretchable microelectrode array and its application to neural field potential recordings. J Electrochem Soc 156:P85–P94

    Article  CAS  Google Scholar 

  12. Graz I et al (2009) Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates. Appl Phys Lett 94:071902

    Article  Google Scholar 

  13. Haftek J (1970) Stretch injury of peripheral nerve. J Bone Joint Surg 52B:354–365

    Google Scholar 

  14. Hai A et al (2009) Changing gears from chemical adhesion of cells to flat substrata toward engulfment of micro-protusions by active mechanisms. J Neural Eng 6:0066009

    Article  Google Scholar 

  15. Hetke JF, Anderson DJ (2003) Silicon microelectrodes for extracellular recording. In: Finn WE, LoPresti PG (eds) Handbook of neuroprosthetic methods, chapter 7. CRC Press, Boca Raton

    Google Scholar 

  16. Hochberg L et al (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164–171

    Article  CAS  PubMed  Google Scholar 

  17. http://professional.medtronic.com/devices/activa-pc/overview/index.htm, 2010

  18. Janmey PA et al (2009) The hard life of soft cells. Cell Motil Cytoskelet 66:597–605

    Article  Google Scholar 

  19. Kim S et al (2009) Integrated wireless neural interfaces based on the Utah electrode array. Biomed Microdevices 11:453–466

    Article  CAS  PubMed  Google Scholar 

  20. Krause M et al (2000) Extended gate electrode arrays for extracellular signal recordings. Sens Actuators B 70:101–107

    Article  Google Scholar 

  21. Lacour SP (2009) Long micro-channel electrode arrays: a novel type of regenerative peripheral nerve interface. IEEE Trans Neural Syst Rehabil Eng (vol. online)

  22. Lacour SP et al (2005) Stretchable micro-electrode arrays for dynamic neuronal recording of in vitro mechanically injured brain. In: Proceedings of the fourth IEEE conference on sensors, pp 617–620

  23. Lacour SP et al (2006) Mechanisms of reversible stretchability of thin metal films on elastomeric substrates. Appl Phys Lett 88:204103-1–204103-3

    Article  Google Scholar 

  24. Lacour SP et al (2008) Polyimide micro-channel arrays for peripheral nerve regenerative implants. Sens Actuators A 147:456–463

    Article  Google Scholar 

  25. Maghribi M et al (2002) Stretchable micro-electrode array. In: Second annual international IEEE-EMBS special topic conference on microtechnologies in medicine and biology, pp 80–83

  26. Meacham KW et al (2008) A lithographically-patterned, elastic multi-electrode array for surface stimulation of the spinal cord. Biomed Microdevices 10:259–269

    Article  PubMed  Google Scholar 

  27. Morrison B et al (1998) In vitro central nervous system models of mechanically induced trauma: a review. J Neurotrauma 15:911–928

    Article  PubMed  Google Scholar 

  28. Morrison B et al (2006) An in vitro model of traumatic brain injury utilising two-dimensional stretch of organotypic hippocampal slice cultures. J Neurosci Methods 150:192–201

    Article  PubMed  Google Scholar 

  29. Moshayedi P et al (2010) Mechanosensitivity of astrocytes on optimized polyacrylamide gels analyzed by quantitative morphometry. J Phys Condens Matter 22:194114

    Article  Google Scholar 

  30. MultiChannelSystems (2010, 21/05/2010) Microelectrode arrays

  31. Navarro X et al (2005) A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst 10:229–258

    Article  PubMed  Google Scholar 

  32. Périchon-Lacour S et al (2003) Stretchable gold conductors on elastomeric substrates. Appl Phys Lett 82:2404–2406

    Article  Google Scholar 

  33. Polasek H et al (2009) Intraoperative evaluation of the spiral nerve cuff electrode on the femoral nerve trunk. J Neural Eng 6:066005

    Article  CAS  PubMed  Google Scholar 

  34. Polikov VS et al (2005) Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 148:1–18

    Article  PubMed  Google Scholar 

  35. Rehfeldt F et al (2007) Cell responses to the mechanochemical microenvironment—implications for regenerative medicine and drug delivery. Adv Drug Deliv Rev 59:1329–1339

    Article  CAS  PubMed  Google Scholar 

  36. Rutten WLC et al (1995) 3D neuroelectronic interface devices for neuromuscular control: design studies and realisation steps. Biosens Bioelectr 10:141–153

    Article  CAS  Google Scholar 

  37. Suo Z et al (1999) Mechanics of rollable and foldable film-on-foil electronics. Appl Phys Lett 74:1177–1179

    Article  CAS  Google Scholar 

  38. Wagner S et al (2005) Chapter 14: mechanics of TFT technology on flexible substrates. In: Crawford GP (ed) Flexible flat panel displays. Wiley, Chichester, pp 263–283

    Chapter  Google Scholar 

  39. Williams JC et al (2007) Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants. J Neural Eng 4:410–423

    Article  PubMed  Google Scholar 

  40. Wilson BS, Dorman MF (2008) Cochlear implants: a remarkable past and a brilliant future. Hear Res 242:3–21

    Article  PubMed  Google Scholar 

  41. Yoshida K, Riso R (2004) Peripheral nerve recording electrodes and techniques. In: Horch KW, Dhillon GS (eds) Neuroprosthetics. Theory and practice. World Scientific Publishing Co., New Jersey, pp 683–744

    Google Scholar 

  42. Yu Z et al (2009) Monitoring hippocampus electrical activity in vitro on an elastically deformable microelectrode array. J Neurotrauma 26:1135–1145

    Article  PubMed  Google Scholar 

  43. Zhang L et al (2001) Biomechanics of brain trauma. Neurol Res 23:144–156

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the NINDS R21 0527794 and the NJ Commission on Science and Technology for BM, ZH, OG, the EPSRC-MRC Basic Technology Program (EP/C52330X) for SB, ET, IM, JF, SM, an MRC/Royal College of Surgeons of England fellowship for JF, and a University Research Fellowship of the Royal Society for SPL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphanie P. Lacour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacour, S.P., Benmerah, S., Tarte, E. et al. Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Med Biol Eng Comput 48, 945–954 (2010). https://doi.org/10.1007/s11517-010-0644-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0644-8

Keywords

Navigation