Skip to main content

Advertisement

Log in

Implantable microscale neural interfaces

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Implantable neural microsystems provide an interface to the nervous system, giving cellular resolution to physiological processes unattainable today with non-invasive methods. Such implantable microelectrode arrays are being developed to simultaneously sample signals at many points in the tissue, providing insight into processes such as movement control, memory formation, and perception. These electrode arrays have been microfabricated on a variety of substrates, including silicon, using both surface and bulk micromachining techniques, and more recently, polymers. Current approaches to achieving a stable long-term tissue interface focus on engineering the surface properties of the implant, including coatings that discourage protein adsorption or release bioactive molecules. The implementation of a wireless interface requires consideration of the necessary data flow, amplification, signal processing, and packaging. In future, the realization of a fully implantable neural microsystem will contribute to both diagnostic and therapeutic applications, such as a neuroprosthetic interface to restore motor functions in paralyzed patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • R.A. Andersen, J.W. Burdick, S. Musallam, B. Pesaran, and J.G. Cham, Trends in Cognitive Sciences 8, 486–493 (2004).

    Article  Google Scholar 

  • A.N. Badi, T.R. Kertesz, R.K. Gurgel, C. Shelton, and R.A. Normann, The Laryngoscope 113, 833–842 (2003).

    Article  Google Scholar 

  • Q. Bai and K.D. Wise, IEEE Transactions on Biomedical Engineering 48, 911–920 (2001).

    Article  Google Scholar 

  • J.P. Bearinger, S. Terrettaz, R. Michel, N. Tirelli, H. Vogel, M. Textor, and J.A. Hubbell, Nature Materials 2, 259–264 (2003).

    Article  Google Scholar 

  • R. Biran, D.C. Martin, and P.A. Tresco, Experimental Neurology 195, 115–126 (2005).

    Article  Google Scholar 

  • N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen, B. Kotchoubey, A. Kubler, J. Perelmouter, E. Taub, and H. Flor, Nature 398, 297–298 (1999).

    Article  Google Scholar 

  • T.J. Blanche, M.A. Spacek, J.F. Hetke, and N.V. Swindale, Journal of Neurophysiology 93, 2987–3000 (2005).

    Article  Google Scholar 

  • A. Branner, R.B. Stein, E. Fernandez, Y. Aoyagi, and R.A. Normann, IEEE Transactions on Biomedical Engineering 51, 146–157 (2004).

    Article  Google Scholar 

  • S. Breit, J.B. Schulz, and A.-L. Benabid, Cell Tissue Research 318, 275–288 (2004).

    Article  Google Scholar 

  • J.J. Burmeister, K. Moxon, and G.A. Gerhardt, Anal. Chem. 72, 187–192 (2000).

    Article  Google Scholar 

  • G. Buzsaki, Nature Neuroscience 7, 446–451 (2004).

    Article  Google Scholar 

  • P.K. Campbell, K.E. Jones, R.J. Huber, K.W. Horch, and R.A. Normann, IEEE Transactions on Biomedical Engineering 38, 758–768 (1991).

    Article  Google Scholar 

  • J.K. Chapin, Nature Neuroscience 7, 452–455 (2004).

    Article  Google Scholar 

  • J. Chen, K.D. Wise, J.F. Hetke, and S.C. Bledsoe, Jr., IEEE Transactions on Biomedical Engineering 44, 760–769 (1997).

    Article  Google Scholar 

  • K.C. Cheung, K. Djupsund, Y. Dan, and L.P. Lee, Journal of Microelectromechanical Systems 12, 179–184 (2003).

    Article  Google Scholar 

  • K.C. Cheung, G. Lee, K. Djupsund, Y. Dan, and L.P. Lee, A new neural probe using SOI wafers with topological interlocking mechanisms. 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. (Lyon, France, 2000).

  • K.C. Cheung, P. Renaud, H. Tanila, and K. Djupsund, Biosensors and Bioelectronics (2006) in press.

  • K.C. Cheung, Y. Zhong, P. Renaud, and R. Bellamkonda, Comparison of tissue reaction to implanted polyimide and silicon microelectrode arrays. Biosurf VI - Tissue-Surface Interaction. (Lausanne, Switzerland, 2005).

  • J. Csicsvari, D.A. Henze, B. Jamieson, K.D. Harris, A. Sirota, P. Bartho, K.D. Wise, and G. Buzsaki, Journal of Neurophysiology 90, 1314–1323 (2003).

    Article  Google Scholar 

  • B.K. Day, F. Pomerleau, J.J. Burmeister, P. Huettl, and G.A. Gerhardt, Journal of Neurochemistry 96, 1626–1635 (2006).

    Article  Google Scholar 

  • J.P. Donoghue, Nature Neuroscience 5, 1085–1088 (2002).

    Article  Google Scholar 

  • K.L. Drake, K.D. Wise, J. Farraye, D.J. Anderson, and S.L. Bement, IEEE Transactions on Biomedical Engineering 35, 719–732 (1988).

    Article  Google Scholar 

  • D.J. Edell, V.V. Toi, V.M. McNeil, and L.D. Clark, IEEE Transactions on Biomedical Engineering 39, 635–643 (1992).

    Article  Google Scholar 

  • G. Ehteshami, A. Singh, G. Coryell, S. Massia, J. He, and G. Raupp, Journal of Biomaterials Science, Polymer Edition 14, 1105–1116 (2003).

    Article  Google Scholar 

  • A.K. Engel, C.K.E. Moll, I. Fried, and G.A. Ojemann, Nature Reviews Neuroscience 6, 35–47 (2005).

    Article  Google Scholar 

  • J.W. Fawcett and R.A. Asher, Brain Research Bulletin 49, 377–391 (1999).

    Article  Google Scholar 

  • Y. Hanein, K.F. Böhringer, R.C. Wyeth, and A.O.D. Willows, Sensors Update 10, 1–29 (2002).

    Article  Google Scholar 

  • Y. Hanein, C.G.J. Schabmueller, G. Holman, P. Lücke, D.D. Denton, and K.F. Böhringer, Journal of Micromechanics and Microengineering 13, S91 (2003).

    Article  Google Scholar 

  • W. He and R.V. Bellamkonda, Biomaterials 26, 2983–2990 (2005).

    Article  Google Scholar 

  • J.F. Hetke, J.C. Williams, D.S. Pellinen, R.J. Vetter, and D.R. Kipke, 3-D silicon probe array with hybrid polymer interconnect for chronic cortical recording. First International IEEE EMBS Conference on Neural Engineering. (Capri Island, Italy, 2003).

  • M. Heuberger, T. Drobek, and N.D. Spencer, Biophysical Journal 88, 495–504 (2005).

    Article  Google Scholar 

  • K.W. Horch and G. Dhillon (eds.), Neuroprosthetics: Theory and Practice, River Edge, NJ, World Scientific Publishing Company (2004).

  • D.T. Kewley, M.D. Hills, D.A. Borkholder, I.E. Opris, N.I. Maluf, C.W. Storment, J.M. Bower, and G.T.A. Kovacs, Sensors Actuators A: Physical 58, 27–35 (1997).

    Article  Google Scholar 

  • M. Kindlundh, P. Norlin, and U.G. Hofmann, Sensors and Actuators B: Chemical 102, 51–58 (2004).

    Article  Google Scholar 

  • D.R. Kipke, International Symposium on Circuits and Systems, ISCAS (2004).

  • B.A. Koeneman, K.-K. Lee, A. Singh, J. He, G.B. Raupp, A. Panitch, and D.G. Capco, Journal of Neuroscience Methods 137, 257–263 (2004).

    Article  Google Scholar 

  • G. Kotzar, M. Freas, P. Abel, A. Fleischman, S. Roy, C. Zorman, J.M. Moran, and J. Melzak, Biomaterials 23, 2737–2750 (2002).

    Article  Google Scholar 

  • G.T.A. Kovacs, Introduction to the theory, design, and modeling of thin-film microelectrodes for neural interfaces. In D.A. Stenger and T.M. McKenna (Eds.), Enabling Technologies for Cultured Neural Networks. (Academic Press, 1994).

  • G.T.A. Kovacs, C.W. Storment, and J.M. Rosen, IEEE Transactions on Biomedical Engineering 39, 893–902 (1992).

    Article  Google Scholar 

  • K. Lee, J. He, R. Clement, S. Massia, and B. Kim, Biosensors and Bioelectronics 20, 404–407 (2004).

    Article  Google Scholar 

  • E.C. Leuthardt, G. Schalk, J.R. Wolpaw, J.G. Ojemann, and D.W. Moran, Journal of Neural Engineering 63–71 (2004).

  • R.T. Liggins and H.M. Burt, Advanced Drug Delivery Reviews 54, 191–202 (2002).

    Article  Google Scholar 

  • X. Liu, D.B. McCreery, R.R. Carter, L.A. Bullara, T.G.H. Yuen, and W.F. Agnew, IEEE Transactions on Rehabilitation Engineering 7, 315–326 (1999).

    Article  Google Scholar 

  • K.A. Ludwig, J.D. Uram, J. Yang, D.C. Martin, and D.R. Kipke, Journal of Neural Engineering 3, 59–70 (2006).

    Article  Google Scholar 

  • M. Maher, J. Pine, J. Wright, and Y.-C. Tai, Journal of Neuroscience Methods 87, 45–56 (1999).

    Article  Google Scholar 

  • C.A. Marrese, Analytical Chemistry 59, 217–218 (1987).

    Article  Google Scholar 

  • S. Metz, A. Bertsch, D. Bertrand, and P. Renaud, Biosensors and Bioelectronics 19, 1309–1318 (2004a).

    Article  Google Scholar 

  • S. Metz, A. Bertsch, and P. Renaud, Journal of Microelectromechanical Systems 14, 383–391 (2005).

    Article  Google Scholar 

  • S. Metz, R. Holzer, and P. Renaud, Lab on a Chip 1, 29–34 (2001).

    Article  Google Scholar 

  • S. Metz, S. Jiguet, A. Bertsch, and P. Renaud, Lab on a Chip 4, 114–120 (2004b).

    Article  Google Scholar 

  • S. Metz, C. Trautmann, A. Bertsch, and P. Renaud, Journal of Micromechanics and Microengineering 14, 324–331 (2004c).

    Article  Google Scholar 

  • D. Missirlis, N. Tirelli, and J.A. Hubbell, Langmuir 21, 2605–2613 (2005).

    Article  Google Scholar 

  • H.G. Mond and D. Grenz, Pacing and Clinical Electrophysiology 27, 887–893 (2004).

    Article  Google Scholar 

  • H. Mond and K. Stokes, Pacing and Clinical Electrophysiology 15, 95–107 (1992).

    Article  Google Scholar 

  • P.S. Motta and J.W. Judy, IEEE Transactions on Biomedical Engineering 52, 923–933 (2005).

    Article  Google Scholar 

  • K.A. Moxon, N.M. Kalkhoran, M. Markert, M.A. Sambito, J.L. McKenzie, and J.T. Webster, IEEE Transactions on Biomedical Engineering 51, 881–889 (2004).

    Article  Google Scholar 

  • K. Najafi and J.F. Hetke, IEEE Transactions on Biomedical Engineering 37, 474–481 (1990).

    Article  Google Scholar 

  • K. Najafi, J. Ji, and K.D. Wise, IEEE Transactions on Biomedical Engineering 37, 1–11 (1990).

    Article  Google Scholar 

  • M.A.L. Nicolelis, Nature 409, 403–407 (2001).

    Article  Google Scholar 

  • M.A.L. Nicolelis, Nature Reviews Neuroscience 4, 417–422 (2003).

    Article  Google Scholar 

  • M.A.L. Nicolelis and J.K. Chapin, Scientific American 287, 46–53 (2002).

    Article  Google Scholar 

  • M.A.L. Nicolelis, D. Dimitrov, J.M. Carmena, R. Crist, G. Lehew, J.D. Kralik, and S.P. Wise, PNAS 100, 11041–11046 (2003).

    Article  Google Scholar 

  • P. Norlin, M. Kindlundh, A. Mouroux, K. Yoshida, and U.G. Hofmann, Journal of Micromechanics and Microengineering 12, 414 (2002).

    Article  Google Scholar 

  • R.A. Normann, P.K. Campbell, and K.E. Jones, Three-dimensional electrode device. In U.S.P.A.T. Office, (Ed.) United States, The University of Utah (1993).

  • W.T. Norton, D.A. Aquino, I. Hozumi, F.-C. Chiu, and C.F. Brosnan, Neurochemical Research (Historical Archive) 17, 877–885 (1992).

    Article  Google Scholar 

  • V.S. Polikov, P.A. Tresco, and W.M. Reichert, Journal of Neuroscience Methods 148, 1–18 (2005).

    Article  Google Scholar 

  • F. Pomerleau, B.K. Day, P. Huettl, J.J. Burmeister, and G.A. Gerhardt, Annals of the New York Academy of Sciences 1003, 454–457 (2003).

    Article  Google Scholar 

  • S.T. Retterer, K.L. Smith, C.S. Bjornsson, K.B. Neeves, A.J.H. Spence, J.N. Turner, W. Shain, and M.S. Isaacson, IEEE Transactions on Biomedical Engineering 51, 2063–2073 (2004).

    Article  Google Scholar 

  • J. Richardson, R.R., J.A. Miller, and W.M. Reichert, Biomaterials 14, 627–635 (1993).

    Article  Google Scholar 

  • F.J. Rodriguez, D. Ceballos, M. Schuttler, A. Valero, E. Valderrama, T. Stieglitz, and X. Navarro, Journal of Neuroscience Methods 98, 105–118 (2000).

    Article  Google Scholar 

  • P.J. Rousche, D.S. Pellinen, D.P. Pivin, Jr., J.C. Williams, R.J. Vetter, and D.R. Kirke, IEEE Transactions on Biomedical Engineering 48, 361–371 (2001).

    Article  Google Scholar 

  • P.J. Rousche and R.A. Normann, IEEE Transactions on Neural Systems and Rehabilitation Engineering 7, 56–68 (1999).

    Article  Google Scholar 

  • S. Schmidt, K. Horch, and R. Normann, Journal of Biomedical Materials Research 27, 1393–1399 (1993).

    Article  Google Scholar 

  • E.M. Schmidt, J.S. McIntosh, and M.J. Bak, Medical & Biological Engineering & Computing 26, 96–101 (1988).

    Article  Google Scholar 

  • E.M. Schmidt, M.J. Bak, and P. Christensen, Journal of Neuroscience Methods 62, 89–92 (1995).

    Article  Google Scholar 

  • M. Schuettler, S. Stiess, B.V. King, and G.J. Suaning, Journal of Neural Engineering 2, S121 (2005).

    Article  Google Scholar 

  • A.B. Schwartz, Annual Review of Neuroscience 27, 487–507 (2004).

    Article  Google Scholar 

  • W. Shain, L. Spataro, J. Dilgen, K. Haverstick, S. Retterer, M. Isaacson, M. Saltzman, and J.N. Turner, IEEE Transactions on Neural Systems and Rehabilitation Engineering 11, 186–188 (2003).

    Article  Google Scholar 

  • L. Spataro, J. Dilgen, S. Retterer, A.J. Spence, M. Isaacson, J.N. Turner, and W. Shain, Experimental Neurology 194, 289–300 (2005).

    Article  Google Scholar 

  • S.S. Stensaas and L.J. Stensaas, Acta Neuropathologica 35, 187–203 (1976).

    Google Scholar 

  • T. Stieglitz, Electrode materials for recording and stimulation. In K.W. Horch and G.S. Dhillon (Eds.) Neuroprosthetics—Theory and Practice. (World Scientific, 2004).

  • T. Stieglitz, Sensors and Actuators A: Physical 90, 203–211 (2001).

    Article  Google Scholar 

  • T. Stieglitz, H. Beutel, and J.-U. Meyer, Sensors and Actuators A: Physical 60, 240–243 (1997).

    Article  Google Scholar 

  • T. Stieglitz, H. Beutel, M. Schuettler, and J.-U. Meyer, Biomedical Microdevices 2, 283–294 (2000).

    Article  Google Scholar 

  • T. Stieglitz, M. Schuettler, and K.P. Koch, IEEE Engineering in Medicine and Biology Magazine 24, 58–65 (2005).

    Article  Google Scholar 

  • F. Strumwasser, Science 127, 469–470 (1958).

    Article  Google Scholar 

  • J. Subbaroyan, D.C. Martin, and D.R. Kipke, Journal of Neural Engineering 2, 103 (2005).

    Article  Google Scholar 

  • S. Suner, M.R. Fellows, C. Vargas-Irwin, G.K. Nakata, and J.P. Donoghue, IEEE Transaction on Neural Systems Rehabilitation Engineering 13, 524–541 (2005).

    Article  Google Scholar 

  • D.H. Szarowski, M.D. Andersen, S. Retterer, A.J. Spence, M. Isaacson, H.G. Craighead, J.N. Turner, and W. Shain, Brain Research 983, 23–35 (2003).

    Article  Google Scholar 

  • S. Takeuchi, D. Ziegler, Y. Yoshida, K. Mabuchi, and T. Suzuki, Lab on a Chip 5, 519–523 (2005).

    Article  Google Scholar 

  • S. Tatic-Lucic, J.A. Wright, Y.-C. Tai, and J. Pine, Sensors and Actuators B: Chemical 43, 105–109 (1997).

    Article  Google Scholar 

  • D.M. Taylor, S.I.H. Tillery, and A.B. Schwartz, Science 296, 1829–1832 (2002).

    Article  Google Scholar 

  • G. Townsend, P. Peloquin, F. Kloosterman, J.F. Hetke, and L.S. Leung, Brain Research Protocols 9, 122–129 (2002).

    Article  Google Scholar 

  • J.N. Turner, W. Shain, D.H. Szarowski, M. Andersen, S. Martins, M. Isaacson, and H. Craighead, Experimental Neurology 156, 33–49 (1999).

    Article  Google Scholar 

  • K. Walsh, J. Norville, and Y.-C. Tai, Photoresist as a sacrificial layer by dissolution in acetone. The 14th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2001. (Interlaken, Switzerland, 2001).

  • K.D. Wise, IEEE Engineering in Medicine and Biology Magazine 24, 22–29 (2005).

    Article  Google Scholar 

  • K.D. Wise, D.J. Anderson, J.F. Hetke, D.R. Kipke, and K. Najafi, Proceeding of the IEEE 92, 76–97 (2004).

    Article  Google Scholar 

  • K.D. Wise and J.B. Angell, IEEE Transactions on Biomedical Engineering BME-22, 212–219 (1975).

    Article  Google Scholar 

  • K.D. Wise, J.B. Angell, and A. Starr, IEEE Transactions on Biomedical Engineering BME-17, 238–247 (1970).

    Google Scholar 

  • J.R. Wolpaw and D.J. McFarland, PNAS 0403504101 (2004).

  • Y. Zhong and R.V. Bellamkonda, Journal of Controlled Release 106, 309–318 (2005).

    Article  Google Scholar 

  • Y. Zhong, G.C. McConnell, J.D. Ross, S.P. Deweerth, and R.V. Bellamkonda, A novel dexamethasone-releasing, anti-inflammatory coating for neural implants. 2nd International IEEE EMBS Conference on Neural Engineering (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen C. Cheung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, K.C. Implantable microscale neural interfaces. Biomed Microdevices 9, 923–938 (2007). https://doi.org/10.1007/s10544-006-9045-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-006-9045-z

Keywords

Navigation