Skip to main content

Advertisement

Log in

Investigation of the in vitro corrosion behavior and biocompatibility of niobium (Nb)-reinforced hydroxyapatite (HA) coating on CoCr alloy for medical implants

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, a niobium-reinforced hydroxyapatite (HA-Nb) coating was developed on cobalt–chromium (CoCr) alloy by plasma spraying with three varied levels, i.e., 10, 20, and 30% of weight percent (wt%) of Nb content. The corrosion behavior and biocompatibility of the samples were analyzed through electrochemical corrosion testing and cytotoxicity studies, respectively. The results of corrosion testing revealed that the HA coating increased the corrosion resistance of the CoCr alloy, and with the incremental increase of Nb reinforcement in HA, corrosion resistance was further enhanced. The HA-30Nb coating demonstrated the finest corrosion resistance with the highest Ecorr and lowest Icorr values, which were about one order of magnitude lower in comparison to the bare CoCr alloy. The surface hardness increased and the surface roughness decreased with the increase of Nb content in the coating. Wettability analysis revealed that HA and HA-Nb coatings had a hydrophilic nature. HA-Nb coatings demonstrated a significantly better cell proliferation than the CoCr alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Similar content being viewed by others

References

  1. F. Likibi, B. Jiang, and B. Li: Biomimetic nanocoating promotes osteoblast cell adhesion on biomedical implants. J. Mater. Res. 23, 3222 (2008).

    Article  CAS  Google Scholar 

  2. H. Sahasrabudhe, S. Bose, and A. Bandyopadhyay: Laser processed calcium phosphate reinforced CoCrMo for load-bearing applications: Processing and wear induced damage evaluation. Acta Biomater. 66, 118 (2018).

    Article  CAS  Google Scholar 

  3. D. Cetiner, A.H. Paksoy, O. Tazegul, M. Baydogan, H. Guleryuz, H. Cimenoglu, and E. Atar: A novel fabrication method for a TiO2 layer over CoCr alloy. Surf. Eng. 35, 234 (2018).

    Article  CAS  Google Scholar 

  4. D. Pradhan, A.W. Wren, S.T. Misture, and N.P. Mellott: Investigating the structure and biocompatibility of niobium and titanium oxides as coatings for orthopedic metallic implants. Mater. Sci. Eng., C 58, 918 (2016).

    Article  CAS  Google Scholar 

  5. L. Luo, A. Petit, J. Antoniou, D.J. Zukor, O.L. Huk, R.C.W. Liu, F.M. Winnik, and F. Mwale: Effect of cobalt and chromium ions on MMP-1, TIMP-1, and TNF-α gene expression in human U937 macrophages: A role for tyrosine kinases. Biomaterials 26, 5587 (2005).

    Article  CAS  Google Scholar 

  6. H. Darwiche, W.K. Barsoum, A. Klika, V.E. Krebs, and R. Molloy: Retrospective analysis of infection rate after early reoperation in total hip arthroplasty. Clin. Orthop. Relat. Res. 468, 2392 (2010).

    Article  Google Scholar 

  7. K.L. Garvin and B.S. Konigsberg: Infection following total knee arthroplasty: Prevention and management. J. Bone Jt. Surg. 93, 1167 (2011).

    Article  Google Scholar 

  8. N. Logan, A. Sherif, A.J. Cross, S.N. Collins, A. Traynor, L. Bozec, I.P. Parkin, and P. Brett: TiO2-coated CoCrMo: Improving the osteogenic differentiation and adhesion of mesenchymal stem cells in vitro. J. Biomed. Mater. Res., Part A 103, 1208 (2015).

    Article  CAS  Google Scholar 

  9. B. Singh, G. Singh, and B.S. Sidhu: Analysis of corrosion behavior and surface properties of plasma-sprayed HA/Ta coating on CoCr alloy. J. Therm. Spray Technol. 27, 1401 (2018).

    Article  CAS  Google Scholar 

  10. I. Ratha, A. Anand, S. Chatterjee, B. Kundu, and G.S. Kumar: Preliminary study on effect of nano-hydroxyapatite and mesoporous bioactive glass on DNA. J. Mater. Res. 33, 1592 (2018).

    Article  CAS  Google Scholar 

  11. A.A. Campbell: Bioceramics for implant coatings. Mater. Today 6, 26 (2003).

    Article  CAS  Google Scholar 

  12. T. Moskalewicz, A. Łukaszczyk, A. Kruk, M. Kot, D. Jugowiec, B. Dubiel, and A. Radziszewska: Porous HA and nanocomposite nc-TiO2/HA coatings to improve the electrochemical corrosion resistance of the Co–28Cr–5Mo alloy. Mater. Chem. Phys. 199, 144 (2017).

    Article  CAS  Google Scholar 

  13. M. ibrahim Coşkun, İ.H. Karahan, and Y. Yücel: Optimized electrodeposition concentrations for hydroxyapatite coatings on CoCrMo biomedical alloys by computational techniques. Electrochim. Acta 150, 46 (2014).

    Article  CAS  Google Scholar 

  14. M.R. Shirdar, S. Izman, M.M. Taheri, M. Assadian, and M.R. Abdul Kadir: Effect of electrophoretic deposition parameters on the corrosion behavior of hydroxyapatite-coated cobalt–chromium using response surface methodology. Arabian J. Sci. Eng. 41, 591 (2016).

    Article  CAS  Google Scholar 

  15. H. Kheimehsari, S. Izman, and M.R. Shirdar: Effects of HA-coating on the surface morphology and corrosion behavior of a Co–Cr-based implant in different conditions. J. Mater. Eng. Perform. 24, 2294 (2015).

    Article  CAS  Google Scholar 

  16. J.N. Barry, A. Cowley, P.J. McNally, and D.P. Dowling: Influence of substrate metal alloy type on the properties of hydroxyapatite coatings deposited using a novel ambient temperature deposition technique. J. Biomed. Mater. Res., Part A 102, 871 (2014).

    Article  CAS  Google Scholar 

  17. G. Singh, H. Singh, and B.S. Sidhu: Corrosion behavior of plasma sprayed hydroxyapatite and hydroxyapatite-silicon oxide coatings on AISI 304 for biomedical application. Appl. Surf. Sci. 284, 811 (2013).

    Article  CAS  Google Scholar 

  18. T.P. Singh, H. Singh, and H. Singh: Characterization, corrosion resistance, and cell response of high-velocity flame-sprayed HA and HA/TiO2 coatings on 316L SS. J. Therm. Spray Technol. 21, 917 (2012).

    Article  CAS  Google Scholar 

  19. Y. Xiong, X. Hu, and R. Song: Characteristics of CeO2/ZrO2-HA composite coating on ZK60 magnesium alloy. J. Mater. Res. 32, 1073 (2017).

    Article  CAS  Google Scholar 

  20. G. Singh, H. Singh, and B.S. Sidhu: Characterization and corrosion resistance of plasma sprayed HA and HA–SiO2 coatings on Ti–6Al–4V. Surf. Coat. Technol. 228, 242 (2013).

    Article  CAS  Google Scholar 

  21. Y. Huang, X. Zhang, H. Qiao, M. Hao, H. Zhang, Z. Xu, X. Zhang, X. Pang, and H. Lin: Corrosion resistance and cytocompatibility studies of zinc-doped fluorohydroxyapatite nanocomposite coatings on titanium implant. Ceram. Int. 42, 1903 (2016).

    Article  CAS  Google Scholar 

  22. V.V. Anusha Thampi and B. Subramanian: Enhancement of bioactivity of pulsed magnetron sputtered TiCxNy with bioactive glass (BAG) incorporated polycaprolactone (PCL) composite scaffold. J. Alloys Compd. 649, 1210 (2015).

    Article  CAS  Google Scholar 

  23. G. Singh, H. Singh, and B.S. Sidhu: In vitro corrosion investigations of plasma-sprayed hydroxyapatite and hydroxyapatite-calcium phosphate coatings on 316L SS. Bull. Mater. Sci. 37, 1519 (2014).

    Article  CAS  Google Scholar 

  24. D. Ke, S. Robertson, W. Dernell, A. Bandyopadhyay, and S. Bose: Effects of MgO and SiO2 on plasma-sprayed hydroxyapatite coating: An in vivo study in rat distal femoral defects. ACS Appl. Mater. Interfaces 9, 25731 (2017).

    Article  CAS  Google Scholar 

  25. G. Fielding, M. Roy, A. Bandyopadhyay, and S. Bose: Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. Acta Biomater. 8, 144 (2012).

    Article  CAS  Google Scholar 

  26. S.A. Pauline and N. Rajendran: Effect of Sr on the bioactivity and corrosion resistance of nanoporous niobium oxide coating for orthopaedic applications. Mater. Sci. Eng., C 36, 194 (2014).

    Article  CAS  Google Scholar 

  27. M. Sowa, A. Kazek-Kęsik, A. Krząkała, R.P. Socha, G. Dercz, J. Michalska, and W. Simka: Modification of niobium surfaces using plasma electrolytic oxidation in silicate solutions. J. Solid State Electrochem. 18, 3129 (2014).

    Article  CAS  Google Scholar 

  28. A. Robin and J.L. Rosa: Corrosion behavior of niobium, tantalum and their alloys in hot hydrochloric and phosphoric acid solutions. Int. J. Refract. Met. Hard Mater. 18, 13 (2000).

    Article  CAS  Google Scholar 

  29. M.H. Fathi and F. Azam: Novel hydroxyapatite/tantalum surface coating for metallic dental implant. Mater. Lett. 61, 1238 (2007).

    Article  CAS  Google Scholar 

  30. L. Sun, C.C. Berndt, K.A. Gross, and A. Kucuk: Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: A review. J. Biomed. Mater. Res. 58, 570 (2001).

    Article  CAS  Google Scholar 

  31. L. Sun, C.C. Berndt, and C.P. Grey: Phase, structural and microstructural investigations of plasma sprayed hydroxyapatite coatings. Mater. Sci. Eng., A 360, 70 (2003).

    Article  CAS  Google Scholar 

  32. G. Singh, S. Singh, and S. Prakash: Surface characterization of plasma sprayed pure and reinforced hydroxyapatite coating on Ti6Al4V alloy. Surf. Coat. Technol. 205, 4814 (2011).

    Article  CAS  Google Scholar 

  33. T.P. Ntsoane, M. Topic, and R. Bucher: Near-surface in vitro studies of plasma sprayed hydroxyapatite coatings. Powder Diffr. 26, 138 (2011).

    Article  CAS  Google Scholar 

  34. H. Ardelean, I. Frateur, and P. Marcus: Corrosion protection of magnesium alloys by cerium, zirconium and niobium-based conversion coatings. Corros. Sci. 50, 1907 (2008).

    Article  CAS  Google Scholar 

  35. S. Nagarajan, V. Raman, and N. Rajendran: Synthesis and electrochemical characterization of porous niobium oxide coated 316L SS for orthopedic applications. Mater. Chem. Phys. 119, 363 (2010).

    Article  CAS  Google Scholar 

  36. S.A. Pauline and N. Rajendran: Biomimetic novel nanoporous niobium oxide coating for orthopaedic applications. Appl. Surf. Sci. 290, 448 (2014).

    Article  CAS  Google Scholar 

  37. P.S. Prevéy: X-ray diffraction characterization of crystallinity and phase composition in plasma-sprayed hydroxyapatite coatings. J. Therm. Spray Technol. 9, 369 (2000).

    Article  Google Scholar 

  38. C. Zhang, H. Xu, X. Geng, J. Wang, J. Xiao, and P. Zhu: Effect of spray distance on microstructure and tribological performance of suspension plasma-sprayed hydroxyapatite–titania composite coatings. J. Therm. Spray Technol. 25, 1255 (2016).

    Article  CAS  Google Scholar 

  39. R.K. Williams, W.H. Butler, R.S. Graves, and J.P. Moore: Experimental and theoretical evaluation of the phonon thermal conductivity of niobium at intermediate temperatures. Phys. Rev. B 28, 6316 (1983).

    Article  CAS  Google Scholar 

  40. A. Rapacz-Kmita, A. Ślósarczyk, Z. Paszkiewicz, and D. Paluch: Evaluation of HAp–ZrO2 composites and monophase HAp bioceramics. In vitro study. J. Mater. Sci. 39, 5865 (2004).

    Article  CAS  Google Scholar 

  41. X. Chen, B. Zhang, Y. Gong, P. Zhou, and H. Li: Mechanical properties of nanodiamond-reinforced hydroxyapatite composite coatings deposited by suspension plasma spraying. Appl. Surf. Sci. 439, 60 (2018).

    Article  CAS  Google Scholar 

  42. L.G. Ellies, D.G.A. Nelson, and J.D.B. Featherstone: Crystallographic changes in calcium phosphates during plasma-spraying. Biomaterials 13, 313 (1992).

    Article  CAS  Google Scholar 

  43. M.F. Hasan, J. Wang, and C. Berndt: Determination of the mechanical properties of plasma-sprayed hydroxyapatite coatings using the knoop indentation technique. J. Therm. Spray Technol. 24, 865 (2015).

    Article  CAS  Google Scholar 

  44. D. Gopi, A. Karthika, D. Rajeswari, L. Kavitha, R. Pramod, and J. Dwivedi: Investigation on corrosion protection and mechanical performance of minerals substituted hydroxyapatite coating on HELCDEB-treated titanium using pulsed electrodeposition method. RSC Adv. 4, 34751 (2014).

    Article  CAS  Google Scholar 

  45. M.F. Hasan, J. Wang, and C. Berndt: Evaluation of the mechanical properties of plasma sprayed hydroxyapatite coatings. Appl. Surf. Sci. 303, 155 (2014).

    Article  CAS  Google Scholar 

  46. D. Yamashita, M. Machigashira, M. Miyamoto, H. Takeuchi, K. Noguchi, Y. Izumi, and S. Ban: Effect of surface roughness on initial responses of osteoblast-like cells on two types of zirconia. Dent. Mater. J. 28, 461 (2009).

    Article  CAS  Google Scholar 

  47. F.A. Shah, M.L. Johansson, O. Omar, H. Simonsson, A. Palmquist, and P. Thomsen: Laser-modified surface enhances osseointegration and biomechanical anchorage of commercially pure titanium implants for bone-anchored hearing systems. PLoS One 11, e0157504 (2016).

    Article  CAS  Google Scholar 

  48. K.A. Gross and M. Babovic: Influence of abrasion on the surface characteristics of thermally sprayed hydroxyapatite coatings. Biomaterials 23, 4731 (2002).

    Article  CAS  Google Scholar 

  49. W. Xie, J. Wang, C. Berndt, W. Xie, J. Wang, and C.C. Berndt: Ethylene methacrylic acid (EMAA) single splat morphology. Coatings 3, 82 (2013).

    Article  CAS  Google Scholar 

  50. Z. Geng, R. Wang, X. Zhuo, Z. Li, Y. Huang, L. Ma, Z. Cui, S. Zhu, Y. Liang, Y. Liu, H. Bao, X. Li, Q. Huo, Z. Liu, and X. Yang: Incorporation of silver and strontium in hydroxyapatite coating on titanium surface for enhanced antibacterial and biological properties. Mater. Sci. Eng., C 71, 852 (2017).

    Article  CAS  Google Scholar 

  51. F. Marashi-Najafi, J. Khalil-Allafi, and M.R. Etminanfar: Biocompatibility of hydroxyapatite coatings deposited by pulse electrodeposition technique on the Nitinol superelastic alloy. Mater. Sci. Eng., C 76, 278 (2017).

    Article  CAS  Google Scholar 

  52. S. Durdu, K. Korkmaz, S.L. Aktuğ, and A. Çakır: Characterization and bioactivity of hydroxyapatite-based coatings formed on steel by electro-spark deposition and micro-arc oxidation. Surf. Coat. Technol. 326, 111 (2017).

    Article  CAS  Google Scholar 

  53. M. Poorraeisi and A. Afshar: The study of electrodeposition of hydroxyapatite-ZrO2–TiO2 nanocomposite coatings on 316 stainless steel. Surf. Coat. Technol. 339, 199 (2018).

    Article  CAS  Google Scholar 

  54. H. Wang, Y. Zheng, C. Jiang, Y. Li, and Y. Fu: In vitro corrosion behavior and cytocompatibility of pure Fe implanted with Ta. Surf. Coat. Technol. 320, 201 (2017).

    Article  CAS  Google Scholar 

  55. S.R. Kiahosseini, A. Afshar, M. Mojtahedzadeh Larijani, and M. Yousefpour: Structural and corrosion characterization of hydroxyapatite/zirconium nitride-coated AZ91 magnesium alloy by ion beam sputtering. Appl. Surf. Sci. 401, 172 (2017).

    Article  CAS  Google Scholar 

  56. M.H. Enayati, M.H. Fathi, and A. Zomorodian: Characterisation and corrosion properties of novel hydroxyapatite niobium plasma sprayed coating. Surf. Eng. 25, 338 (2009).

    Article  CAS  Google Scholar 

  57. S. Mohajernia, S. Pour-Ali, S. Hejazi, M. Saremi, and A-R. Kiani-Rashid: Hydroxyapatite coating containing multi-walled carbon nanotubes on AZ31 magnesium: Mechanical-electrochemical degradation in a physiological environment. Ceram. Int. 44, 8297 (2018).

    Article  CAS  Google Scholar 

  58. Y.W. Gu, K.A. Khor, and P. Cheang: In vitro studies of plasma-sprayed hydroxyapatite/Ti–6Al–4V composite coatings in simulated body fluid (SBF). Biomaterials 24, 1603 (2003).

    Article  CAS  Google Scholar 

  59. C.Y. Yang, B.C. Wang, E. Chang, and B.C. Wu: Bond degradation at the plasma-sprayed HA coating/Ti–6Al–4V alloy interface: An in vitro study. J. Mater. Sci.: Mater. Med. 6, 258 (1995).

    CAS  Google Scholar 

  60. Z. Zhang, M.F. Dunn, T.D. Xiao, A.P. Tomsia, and E. Saiz: Nanostructured hydroxyapatite coatings for improved adhesion and corrosion resistance for medical implants. MRS Online Proc. Libr. 703, 291 (2001).

    Google Scholar 

  61. K. Balani, R. Anderson, T. Laha, M. Andara, J. Tercero, E. Crumpler, and A. Agarwal: Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro. Biomaterials 28, 618 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Zapp Precision Metals, Germany and Medicoat, France are gratefully acknowledged for sponsoring CoCr alloy substrate material and HA powder, respectively. The authors are also grateful to the Mechanical Engineering Department and Center for Biomedical Engineering, IIT Ropar, India for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurpreet Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Singh, G. & Sidhu, B.S. Investigation of the in vitro corrosion behavior and biocompatibility of niobium (Nb)-reinforced hydroxyapatite (HA) coating on CoCr alloy for medical implants. Journal of Materials Research 34, 1678–1691 (2019). https://doi.org/10.1557/jmr.2019.94

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.94

Navigation