Skip to main content

Advertisement

Log in

Characterization, Corrosion Resistance, and Cell Response of High-Velocity Flame-Sprayed HA and HA/TiO2 Coatings on 316L SS

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The main aim of this study is to evaluate corrosion and biocompatibility behavior of thermal spray hydroxyapatite (HA) and hydroxyapatite/titania bond (HA/TiO2)-coated 316L stainless steel (316L SS). In HA/TiO2 coatings, TiO2 was used as a bond coat between HA top coat and 316L SS substrate. The coatings were characterized by x-ray diffraction and scanning electron microscopy/energy dispersive spectroscopy, and corrosion resistance determined for the uncoated substrate and the two coatings. The biological behavior was investigated by the cell culture studies using osteosarcoma cell line KHOS-NP (R-970-5). The corrosion resistance of the steel was found to increase after the deposition of the HA and HA/TiO2 bond coatings. Both HA, as well as, HA/TiO2 coatings exhibit excellent bond strength of 49 and 47 MPa, respectively. The cell culture studies showed that HA-coated 316L SS specimens appeared more biocompatible than the uncoated and HA/TiO2-coated 316L SS specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. T. Hanawa, Materials for Metallic Stents, J. Artif. Organs, 2009, 12(2), p 73-79

    Article  CAS  Google Scholar 

  2. G. Manivasagam, D. Dhinasekaran, and A. Rajamanickam, Biomedical Implants: Corrosion and its Prevention—A Review, Recent Pat. Corros. Sci., 2010, 2, p 40-54

    Article  CAS  Google Scholar 

  3. M. Songur, H. Celikkan, F. Gokmese, S.A. Simsek, N.S. Altun, and M.L. Aksu, Electrochemical Corrosion Properties of Metal Alloys Used in Orthopaedic Implants, J. Appl. Electrochem., 2009, 39, p 1259-1265

    Article  CAS  Google Scholar 

  4. B. Aksakal, M. Gavgali, and B. Dikici, The Effect of Coating Thickness on Corrosion Resistance of Hydroxyapatite Coated Ti6Al4V and 316L SS Implants, J. Mater. Eng. Perform., 2010, 19(6), p 894-899

    Article  CAS  Google Scholar 

  5. U.K. Mudali, T.M. Sridhar, and B. Raj, Corrosion of Bio Implants, Sadhana, 2003, 28(3-4), p 601-637

    Article  Google Scholar 

  6. B. Aksakal, O.S. Yildirim, and H. Gul, Metallurgical Failure Analysis of Various Implant Materials Used in Orthopedic Applications, J. Fail. Anal. Prev., 2005, 18(2), p 101-105

    Google Scholar 

  7. S.D. Cook, K.A. Thomas, A.F. Harding, C.L. Collins, R.J. Haddad, Jr., M. Milicic, and W.L. Fischer, The In Vivo Performance of 250 Internal Fixation Devices: A Follow-Up Study, Biomaterials, 1987, 8(3), p 177-184

    Article  CAS  Google Scholar 

  8. S. Hiromoto, Corrosion of Metallic Biomaterials in Cell Culture Environments, Electrochem. Soc. Interface, 2008, 7(2), p 41-44

    Google Scholar 

  9. H. Amel-Farzad, M.T. Peivandi, and S.M.R. Yusof-Sani, In-Body Corrosion Fatigue Failure of a Stainless Steel Orthopaedic Implant with a Rare Collection of Different Damage Mechanisms, Eng. Fail. Anal., 2007, 14, p 1205-1217

    Article  CAS  Google Scholar 

  10. J.L. Gilbert, C.A. Buckley, J.J. Jacobs, K.C. Bertin, and M.R. Zernich, Intergranular Corrosion-Fatigue Failure of Cobalt-Alloy Femoral Stems. A Failure Analysis of Two Implants, J. Bone Joint Surg., 1994, 76-A(1), p 110-115

    Google Scholar 

  11. S.D. Cook, R.L. Barrack, and A.J.T. Clemow, Corrosion and Wear at the Modular Interface of Uncemented Femoral Stems, J. Bone Joint Surg., 1994, 76-B(1), p 68-72

    Google Scholar 

  12. E.B. Mathiesen, J.U. Lindgren, G.G.A. Blomgren, and F.P. Reinholt, Corrosion of Modular Hip Prostheses, J. Bone Joint Surg., 1991, 73-B(4), p 569-575

    Google Scholar 

  13. X. Liu, P.K. Chu, and C. Ding, Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Mater. Sci. Eng. R., 2004, 47(3-4), p 49-121

    Article  Google Scholar 

  14. M. Gaona, R.S. Lima, and B.R. Marple, Nanostructured Titania/Hydroxyapatite Composite Coatings Deposited by High Velocity Oxy-Fuel (HVOF) Spraying, Mater. Sci. Eng., 2007, 458(1-2), p 141-149

    Article  Google Scholar 

  15. R. Singh and N.B. Dahotre, Corrosion Degradation and Prevention by Surface Modification of Biometallic Materials, J. Mater. Sci.: Mater. Med., 2007, 18(5), p 725-751

    Article  CAS  Google Scholar 

  16. L. Xu, F. Pan, G. Yu, L. Yang, E. Zhang, and K. Yang, In Vitro and In Vivo Evaluation of the Surface Bioactivity of a Calcium Phosphate Coated Magnesium Alloy, Biomaterials, 2009, 30(8), p 1512-1523

    Article  CAS  Google Scholar 

  17. T.M. Sridhar, T.K. Arumugam, S. Rajeswari, and M. Subbaiyan, Electrochemical Behaviour of Hydroxyapatite-Coated Stainless Steel Implants, J. Mater. Sci. Lett., 1997, 16, p 1964-1967

    Article  CAS  Google Scholar 

  18. U. Vijayalakshmi, A. Balamurugan, and S. Rajeshwari, Synthesis and Characterization of Porous Silica Gels for Biomedical Applications, Trends Biomater. Artif. Organs, 2005, 18(2), p 101-105

    Google Scholar 

  19. N. Olmo, A.I. Mratin, A.J. Salinas, J. Turnay, M. Vallet-Regi, and M.A. Lizarbe, Bioactive Sol-Gel Glasses with and without a Hydroxycarbonate Apatite Layer as Substrates for Osteoblast Cell Adhesion and Proliferation, Biomaterials, 2003, 24(20), p 3383-3393

    Article  CAS  Google Scholar 

  20. L.L. Guehennec, A. Soueidan, P. Layrolle, and Y. Amouriq, Surface Treatments of Titanium Dental Implants for Rapid Osseointegration, Dent. Mater., 2007, 23, p 844-854

    Article  Google Scholar 

  21. Y. Huang, Y. Wang, C. Ning, K. Nan, and Y. Han, Hydroxyapatite Coatings Produced on Commercially Pure Titanium by Micro-Arc Oxidation, Biomed. Mater., 2007, 2(3), p 196-201

    Article  CAS  Google Scholar 

  22. H. Ishizawa and M. Ogino, Hydrothermal Precipitation of Hydroxyapatite on Anodic Titanium Oxide Films Containing Ca and P, J. Mater. Sci., 1999, 34, p 5893-5898

    Article  CAS  Google Scholar 

  23. A. Balamurugan, S. Kanan, and S. Rajeswari, Bioactive Sol-Gel Hydroxyapatite Surface for Biomedical Applications-In Vitro Study, Trends Biomater. Artif. Organs, 2002, 16(1), p 18-20

    Google Scholar 

  24. D. Krupa, J. Baszkiewicz, J.A. Kozubowski, A. Barcz, J.W. Sobczak, A. Bilinski, M. Lewandowska-Szumiel, and B. Rajchel, Effect of Dual Ion Implantation of Calcium and Phosphorus on the Properties of Titanium, Biomaterials, 2005, 26(16), p 2847-2856

    Article  CAS  Google Scholar 

  25. J.A. Darr, Z.X. Guo, V. Raman, M. Bououdina, and I.U. Rehman, Metal Organic Chemical Vapour Deposition (MOCVD) of Bone Mineral Like Carbonated Hydroxyapatite Coatings, Chem. Commun., 2004, 6, p 696-697

    Article  Google Scholar 

  26. V. Nelea, C. Ristoscu, C. Chiritescu, C. Ghica, I.N. Mihailescu, H. Pelletier, P. Mille, and A. Cornet, Pulsed Laser Deposition of Hydroxyapatite Thin Films on Ti-5Al-2.5Fe Substrates With and Without Buffer Layers, Appl. Surf. Sci., 2000, 168(1-4), p 127-131

    Article  CAS  Google Scholar 

  27. J.Z. Shi, C.Z. Chen, H.J. Yu, and S.J. Zhang, Application of Magnetron Sputtering for Producing Bioactive Ceramic Coatings on Implant Materials, Bull. Mater. Sci., 2008, 31(6), p 877-884

    Article  CAS  Google Scholar 

  28. S. Sobieszczyk, Surface Modifications of Ti and Its Alloys, Adv. Mater. Sci., 2010, 10(1), p 29-42

    CAS  Google Scholar 

  29. R.B. Heimann, Plasma Spray Coating Principles and Applications, VCH Weinheim, New York, 1996

    Book  Google Scholar 

  30. H. Li, K.A. Khor, and P. Cheang, Titanium Dioxide Reinforced Hydroxyapatite Coatings Deposited by High Velocity Oxy-Fuel (HVOF) Spray, Biomaterials, 2002, 23(1), p 85-91

    Article  CAS  Google Scholar 

  31. H. Li, K.A. Khor, and P. Cheang, Impact Formation and Microstructure Characterization of Thermal Sprayed Hydroxyapatite/Titania Composite Coatings, Biomaterials, 2003, 24(6), p 949-957

    Article  CAS  Google Scholar 

  32. X. Nie, A. Leyland, and A. Matthews, Deposition of Layered Bioceramic Hydroxyapatite/TiO2 Coatings on Titanium Alloys Using a Hybrid Technique of Micro-Arc Oxidation and Electrophoresis, Surf. Coat. Technol., 2000, 125(1-3), p 407-414

    Article  CAS  Google Scholar 

  33. F.X. Ye, A. Ohmori, T. Tsumura, K. Nakata, and C.J. Li, Microstructural Analysis and Photocatalytic Activity of Plasma-Sprayed Titania-Hydroxyapatite Coatings, J. Therm. Spray Technol., 2007, 16(5-6), p 776-782

    Article  CAS  Google Scholar 

  34. A.R. Boyd, G.A. Burke, H. Duffy, M.L. Cairns, P. O’Hare, and B.J. Meenan, Characterisation of Calcium Phosphate/Titanium Dioxide Hybrid Coatings, J. Mater. Sci.: Mater. Med., 2008, 19(2), p 485-498

    Article  CAS  Google Scholar 

  35. J. Weng, Q. Liu, J.G.C. Wolke, and K. de Groot, The Role of Amorphous Phase in Nucleating Bone-Like Apatite on Plasma-Sprayed Hydroxyapatite Coatings in Simulated Body Fluid, J. Mater. Sci. Lett., 1997, 16(4), p 335-337

    Article  CAS  Google Scholar 

  36. Z. Schwartz and B.D. Boyan, Underlying Mechanisms at the Bone-Biomaterial Interface, J. Cell. Biochem., 1994, 56(3), p 340-347

    Article  CAS  Google Scholar 

  37. T.M. Lee, R.S. Tsai, E. Chang, C.Y. Yang, and M.R. Yang, The Cell Attachment and Morphology of Neonatal Rat Calvarial Osteoblasts on the Surface of Ti6Al4V and Plasma Sprayed HA Coating: Effect of Surface Roughness and Serum Contents, J. Mater. Sci.: Mater. Med., 2002, 13, p 341-350

    Article  CAS  Google Scholar 

  38. K. Kieswetter, Z. Schwartz, T.W. Hummert, D.L. Cochran, J. Simpson, D.D. Dean, and B.D. Boyan, Surface Roughness Modulates the Local Production of Growth Factors and Cytokines by Osteoblast-Like MG-63 Cells, J. Biomed. Mater. Res., 1996, 32(1), p 55-63

    Article  CAS  Google Scholar 

  39. J. Lincks, B.D. Boyan, C.R. Blanchard, C.H. Lohmann, Y. Liu, D.L. Cochran, D.D. Dean, and Z. Schwartz, Response of MG63 Osteoblast-Like Cells to Titanium and Titanium Alloy is Dependent on Surface Roughness and Composition, Biomaterials, 1998, 19, p 2219-2232

    Article  CAS  Google Scholar 

  40. K.A. Gross and M. Babovic, Influence of Abrasion on the Surface Characteristics of Thermally Sprayed Hydroxyapatite Coatings, Biomaterials, 2002, 23(24), p 4731-4737

    Article  CAS  Google Scholar 

  41. J. Fernnandez, M. Gaona, and J.M. Guilemany, Effect of Heat Treatments on HVOF Hydroxyapatite Coatings, J. Therm. Spray Technol., 2007, 16(2), p 220-228

    Article  Google Scholar 

  42. L. Sun, C.C. Berndt, K.A. Gross, and A. Kucuk, Material Fundamentals and Clinical Performance of Plasma-Sprayed Hydroxyapatite Coatings: A Review, J. Biomed. Mater. Res., 2001, 58(5), p 570-592

    Article  CAS  Google Scholar 

  43. S.W.K. Kweh, K.A. Khor, and P. Cheang, An In Vitro Investigation of Plasma Sprayed Hydroxyapatite (HA) Coatings Produced with Flame-Spheroidized Feedstock, Biomaterials, 2002, 23(3), p 775-785

    Article  CAS  Google Scholar 

  44. R.S. Lima, K.A. Khor, H. Li, P. Cheang, and B.R. Marple, HVOF Spraying of Nanostructured Hydroxyapatite for Biomedical Applications, Mater. Sci. Eng., 2005, 396(1-2), p 181-187

    Article  Google Scholar 

  45. W. Xue, H.L. Hosick, A. Bandyopadhyay, S. Bose, C. Ding, K.D.K. Luk, K.M.C. Cheung, and W.W. Lu, Preparation and Cell-Materials Interactions of Plasma Sprayed Strontium-Containing Hydroxyapatite Coating, Surf. Coat. Technol., 2007, 201(8), p 4685-4693

    Article  CAS  Google Scholar 

  46. Y.C. Tsui, C. Doyle, and T.W. Clyne, Plasma Sprayed Hydroxyapatite Coatings on Titanium Substrates Part 1: Mechanical Properties and Residual Stress Levels, Biomaterials, 1998, 19, p 2015-2029

    Article  CAS  Google Scholar 

  47. M. Miyayama, K. Koumoto, and H. Yanagida, Engineering properties of single oxides, Engineering Materials Handbook, Ceramic and Glasses, S.J. Schneider, Ed., ASM International, Materials Park, vol. 4, 1991, p 748-757

  48. F.N. Oktar, M. Yetmez, S. Agathopoulos, T.M. Lopez Goerne, G. Goller, I. Ipeker, and J.M.F. Ferreira, Bond-Coating in Plasma-Sprayed Calcium-Phosphate Coatings, J. Mater. Sci.: Mater. Med., 2006, 17, p 1161-1171

    Article  CAS  Google Scholar 

  49. C. Knabe, F. Klar, R. Fitzner, R.J. Radlanski, and U. Gross, In Vitro Investigation of Titanium and Hydroxyapatite Dental Implant Surfaces using a Rat Bone Marrow Stromal Cell Culture System, Biomaterials, 2002, 23(15), p 3235-3245

    Article  CAS  Google Scholar 

  50. M.H. Fernandez, Effect of Stainless Steel Corrosion Products on In Vitro Biomineralization, J. Biomater. Appl., 1999, 14(2), p 113-168

    Google Scholar 

  51. S. Morais, N. Dias, J.P. Sousa, M.H. Feranandez, and G.S. Carvalho, In Vitro Osteoblastic Differentiation of Human Bone Marrow Cells in the Presence of Metal Ions, J. Biomed. Mater. Res., 1999, 44(2), p 176-190

    Article  CAS  Google Scholar 

  52. D.D. Deligianni, N.D. Katsala, P.G. Koutsoukos, and Y.F. Missirlis, Effect of Surface Roughness of Hydroxyapatite on Human Bone Marrow Cell Adhesion, Proliferation, Differentiation and Detachment Strength, Biomaterials, 2001, 22(1), p 87-96

    Article  CAS  Google Scholar 

  53. T.J. Levingstone, “Optimisation of Plasma Sprayed Hydroxyapatite Coatings,” Ph.D. Thesis, 2008

  54. K.K. Saju, R. Reshmi, N.H. Jayadas, J. James, and M.K. Jayaraj, Polycrystalline Coating of Hydroxyapatite on TiAl6V4 Implant Material Grown at Lower Substrate Temperatures by Hydrothermal Annealing After Pulsed Laser Deposition, J. Eng. Med., 2008, 223, p 1049-1056

    Article  Google Scholar 

  55. J. Folkman and A. Mascona, Role of Cell Shape in Growth Control, Nature, 1978, 273, p 345-349

    Article  CAS  Google Scholar 

  56. C.W. Archer, P. Rooney, and L. Wolpert, Cell Shape and Cartilage Differentiation of Early Chick Limb Bud Cells in Culture, Cell. Differ., 1982, 11, p 245-251

    Article  CAS  Google Scholar 

  57. S.K. Yen, S.H. Chiou, S.J. Wu, C.C. Chang, S.P. Lin, and C.M. Lin, Characterization of Electrolytic HA/ZrO2 Double Layers Coatings on Ti-6Al-4V Implant Alloy, Mater. Sci. Eng., 2006, 26(1), p 65-77

    Article  CAS  Google Scholar 

  58. S.C.P. Cachinho and R.N. Correia, Titanium Scaffolds for Osteointegration: Mechanical, In Vitro and Corrosion Behavior, J. Mater. Sci.: Mater. Med., 2008, 19(1), p 451-457

    Article  CAS  Google Scholar 

  59. M.H. Fathi, M. Salehi, A. Saatchi, V. Mortazavi, and S.B. Moosavi, In Vitro Corrosion Behavior of Bioceramic, Metallic and Bioceramic-Metallic, Coated Stainless Steel Dental Implants, Dent. Mater., 2003, 19(3), p 188-198

    Article  CAS  Google Scholar 

  60. S.R. Sousa and M.A. Barbosa, Effect of Hydroxyapatite Thickness on Metal Ion Release from Ti6Al4V Substrates, Biomaterials, 1996, 17(4), p 397-404

    Article  CAS  Google Scholar 

  61. S.H. Maxian, J.P. Zawadsky, and M.G. Dunn, Mechanical and Histological Evaluation of Amorphous Calcium Phosphate and Poorly Crystallized Hydroxyapatite Coatings on Titanium Coatings, J. Biomed. Mater. Res., 1993, 27(6), p 717-728

    Article  CAS  Google Scholar 

  62. W. Xue, S. Tao, X. Liu, X.B. Zheng, and C. Ding, In Vivo Evaluation of Plasma Sprayed Hydroxyapatite Coatings Having Different Crystallinity, Biomaterials, 2004, 25, p 415-442

    Article  CAS  Google Scholar 

  63. K.A. Gross and S. Saber-Samandari, Nano-Mechanical Properties of Hydroxyapatite Coatings with a Focus on the Single Solidified Droplet, J. Aust. Ceram. Soc., 2007, 43(2), p 98-101

    CAS  Google Scholar 

  64. C.Y. Yang, R.M. Lin, B.C. Wang, T.M. Lee, E. Chang, Y.S. Hang, and P.Q. Chen, In Vitro and In Vivo Mechanical Evaluations of Plasma-Sprayed Hydroxyapatite Coatings on Titanium Implants: The Effect of Coating Characteristics, J. Biomed. Mater. Res., 1997, 37, p 335-345

    Article  CAS  Google Scholar 

  65. N. Mirhosseini, P.L. Crouse, M.J.J. Schmidt, L. Li, and D. Garrod, Laser Micro-Surface Texturing of Ti-6Al-4V Substrates for Improved Cell Integration, Appl. Surf. Sci., 2007, 253(19), p 7738-7743

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support to carry out this study under ISIRD Research Grant from Indian Institute of Technology Ropar, Roopnagar, India. The authors are thankful to Dr Narinder Singh, the Department of Chemistry, the Indian Institute of Technology, Ropar for his help in cell culture studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harpreet Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, T.P., Singh, H. & Singh, H. Characterization, Corrosion Resistance, and Cell Response of High-Velocity Flame-Sprayed HA and HA/TiO2 Coatings on 316L SS. J Therm Spray Tech 21, 917–927 (2012). https://doi.org/10.1007/s11666-012-9782-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-012-9782-x

Keywords

Navigation