Skip to main content

Advertisement

Log in

Effects of HA-Coating on the Surface Morphology and Corrosion Behavior of a Co-Cr-Based Implant in Different Conditions

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The corrosion behavior and surface morphology of a Co-Cr-based implant after HA-coating using the sol-gel method were investigated. Sintering was performed at four different conditions. Surfaces of the samples were characterized and evaluated using field emission scanning electron microscopy. Atomic force microscope was used to measure the surface roughness and to collect the micrographs of the HA-coating layer. The x-ray diffraction results confirmed the formation of a crystalline phase of HA on the surface of the substrates. To measure the corrosion resistance, the samples were dip-coated with two different thicknesses (78 and 142 μm), and then tested by potentiodynamic polarization and spectroscopy (EIS) in SBF at 37 °C after sintering process. This study revealed that the thickness of the HA-coating layer affects the corrosion rate of the substrate, but the sintering condition of the HA-coating layer plays a remarkably more significant role in improving the corrosion resistance of Co-Cr-based implants. Moreover, the sample sintered at 600 °C for 20 min with thickness of 142 μm showed considerably enhanced surface morphology and superior corrosion resistance compared with the bare material and other treated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Niinomi, Metallic Biomaterials, J. Artif. Organs., 2008, 11, p 105-110

    Article  Google Scholar 

  2. M.N. Rahaman, A. Yao, B.S. Bal, J.P. Garino, and M.D. Ries, Ceramics for Prosthetic Hip and Knee Joint Replacement, J. Am. Ceram. Soc., 2007, 90, p 1965-1988

    Article  Google Scholar 

  3. L. Reclaru, H. Lüthy, P.-Y. Eschler, A. Blatter, and C. Susz, Corrosion Behaviour of Cobalt-Chromium Dental Alloys Doped with Precious Metals, Biomaterials, 2005, 26, p 4358-4365

    Article  Google Scholar 

  4. V.P. Mantripragada, B. Lecka-Czernik, N.A. Ebraheim, and A.C. Jayasuriya, An Overview of Recent Advances in Designing Orthopedic and Craniofacial Implants, J. Biomed. Mater. Res. Part A, 2013, 101, p 3349-3364

    Google Scholar 

  5. A. Marti, Cobalt-Base Alloys Used in Bone Surgery, Injury, 2000, 31, p D18-D21

    Article  Google Scholar 

  6. K.R. St John, L.D. Zardiackas, and R.A. Poggie, Wear Evaluation of Cobalt-Chromium Alloy for Use in a Metal-on-Metal Hip Prosthesis, J. Biomed. Mater. Res. Part B, 2004, 68, p 1-14

    Article  Google Scholar 

  7. M.F. Mohd Yusoff, M.R. Abdul Kadir, N. Iqbal, M.A. Hassan, and R. Hussain, Dipcoating of Poly (ε-Caprolactone)/Hydroxyapatite Composite Coating on Ti6Al4 V for Enhanced Corrosion Protection, Surf. Coat. Technol., 2014, 245, p 102-107

    Article  Google Scholar 

  8. N.J. Hallab and J.J. Jacobs, Biologic Effects of Implant Debris, Bull. NYU Hosp. Jt. Dis., 2009, 67, p 182

    Google Scholar 

  9. X. Mao, A.A. Wong, and R.W. Crawford, Cobalt Toxicity—An Emerging Clinical Problem in Patients with Metal-on-Metal Hip Prostheses, Med. J. Aust., 2011, 194, p 649-651

    Google Scholar 

  10. D.E.C. Corbridge, Phosphorus-An Outline of Its Chemistry, Biochemistry and Technology, Elsevier Science Publishers BV, Amsterdam, 1985

    Google Scholar 

  11. J.V. Rau, I. Cacciotti, A. De Bonis, M. Fosca, V.S. Komlev, A. Latini, A. Santagata, and R. Teghil, Fe-Doped Hydroxyapatite Coatings for Orthopedic and Dental Implant Applications, Appl. Surf. Sci., 2014, 307, p 301-305

    Article  Google Scholar 

  12. C.-I. Jo, Y.-H. Jeong, H.-C. Choe, and W.A. Brantley, Hydroxyapatite Precipitation on Nanotubular Films Formed on Ti-6Al-4 V Alloy for Biomedical Applications, Thin Solid Films, 2013, 549, p 135-140

    Article  Google Scholar 

  13. M. Vallet-Regí and J.M. González-Calbet, Calcium Phosphates as Substitution of Bone Tissues, Prog. Solid State Chem., 2004, 32, p 1-31

    Article  Google Scholar 

  14. A. Mazzoli, A. Montenero, G. Moriconi, O. Favoni, I. Alfieri, Thin Films of Calcium Phosphate on Titanium Dental Screws: Sol-Gel Route Versus Plasma Spray, 2007.

  15. C. Wen, W. Xu, W. Hu, and P. Hodgson, Hydroxyapatite/Titania Sol-Gel Coatings on Titanium-Zirconium Alloy for Biomedical Applications, Acta Biomater., 2007, 3, p 403-410

    Article  Google Scholar 

  16. D.-M. Liu, T. Troczynski, and W.J. Tseng, Water-Based Sol-Gel Synthesis of Hydroxyapatite: Process Development, Biomaterials, 2001, 22, p 1721-1730

    Article  Google Scholar 

  17. A. Montenero, G. Gnappi, F. Ferrari, M. Cesari, E. Salvioli, L. Mattogno, S. Kaciulis, and M. Fini, Sol-gel Derived Hydroxyapatite Coatings on Titanium Substrate, J. Mater. Sci., 2000, 35, p 2791-2797

    Article  Google Scholar 

  18. N. Ohtsu, T. Takahara, M. Hirano, and H. Arai, Effect of Treatment Temperature on the Biocompatibility and Mechanical Strength of Hydroxyapatite Coating Formed on titanium Using Calcium Phosphate Slurry, Surf. Coat. Technol., 2014, 239, p 185-190

    Article  Google Scholar 

  19. G. Lewis, Properties of Open-Cell Porous Metals and Alloys for Orthopaedic Applications, J. Mater. Sci. Mater. Med., 2013, 24, p 2293-2325

    Article  Google Scholar 

  20. H.-W. Kim, Y.-H. Koh, L.-H. Li, S. Lee, and H.-E. Kim, Hydroxyapatite Coating on Titanium Substrate with Titania Buffer Layer Processed by Sol-Gel Method, Biomaterials, 2004, 25, p 2533-2538

    Article  Google Scholar 

  21. H.W. Kim, H.E. Kim, V. Salih, and J.C. Knowles, Sol-gel-Modified Titanium with Hydroxyapatite Thin Films and Effect on Osteoblast-Like Cell Responses, J. Biomed. Mater. Res. Part A, 2005, 74, p 294-305

    Article  Google Scholar 

  22. F. Gil, A. Padrós, J. Manero, C. Aparicio, M. Nilsson, and J. Planell, Growth of Bioactive Surfaces on Titanium and Its Alloys for Orthopaedic and Dental Implants, Mater. Sci. Eng. C, 2002, 22, p 53-60

    Article  Google Scholar 

  23. H. Wang, C. Chen, and D. Wang, Effect of Heating Rate on Structure of HA Coating Prepared by Sol-Gel, Surf. Eng., 2009, 25, p 131-135

    Article  Google Scholar 

  24. A.R. Ananda, J. Sagari, M. Malm, P. Laitinen, M. Rahkila, M. Hongqiang, M. Putkonen, H.J. Karppinen, and T. Whitlow, Sajavaara, Influence of Titanium-Substrate Roughness on Ca-P-O Thin Films Grown by Atomic Layer Deposition, Thin Solid Films, 2013, 531, p 26-31

    Article  Google Scholar 

  25. D.D. Deligianni, N.D. Katsala, P.G. Koutsoukos, and Y.F. Missirlis, Effect of Surface Roughness of Hydroxyapatite on Human Bone Marrow Cell Adhesion, Proliferation, Differentiation and Detachment Strength, Biomaterials, 2000, 22, p 87-96

    Article  Google Scholar 

  26. S.R. Paital and N.B. Dahotre, Calcium Phosphate Coatings for Bio-implant Applications: Materials, Performance Factors, and Methodologies, Mater. Sci. Eng., 2009, 66, p 1-70

    Article  Google Scholar 

  27. Y. Yan, A. Neville, D. Dowson, and F. Hollway, Biotribocorrosion of CoCrMo Orthopaedic Implant Materials—Assessing the Formation and Effect of the Biofilm, Tribol. Int., 2007, 40, p 1728

    Article  Google Scholar 

  28. S. Karimi, T. Nickchi, and A. Alfantazi, Effects of Bovine Serum Albumin on the Corrosion Behaviour of AISI, 316L, Co-28Cr-6Mo, and Ti-6Al-4 V Alloys in Phosphate Buffered Saline Solutions, Corros. Sci., 2011, 53, p 3262-3272

    Article  Google Scholar 

  29. C.V. Vidal and A.I. Muñoz, Effect of Thermal Treatment and Applied Potential on the Electrochemical Behaviour of CoCrMo Biomedical Alloy, Electrochim. Acta, 2009, 54, p 1798-1809

    Article  Google Scholar 

  30. L. Casabán Julián and A. Igual Muñoz, Influence of microstructure of HC CoCrMo biomedical alloys on the corrosion and wear behaviour in simulated body fluids, Tribol. Int., 2011, 44, p 318-329

    Article  Google Scholar 

  31. T. Sridhar and S. Rajeswari, Biomaterials Corrosion, Corros. Rev., 2009, 27, p 287-332

    Article  Google Scholar 

  32. S. Kannan, A. Balamurugan, and S. Rajeswari, Hydroxyapatite Coatings on Sulfuric Acid Treated Type 316L SS and Its Electrochemical Behaviour in Ringer’s Solution, Mater. Lett., 2003, 57, p 2382-2389

    Article  Google Scholar 

  33. S. Kannan, A. Balamurugan, and S. Rajeswari, Electrochemical Characterization of Hydroxyapatite Coatings on HNO3 Passivated 316L SS for Implant Applications, Electrochim. Acta, 2005, 50, p 2065-2072

    Article  Google Scholar 

  34. R.M. Souto, Degradation Characteristics of Hydroxyapatite Coatings on Orthopaedic TiAlV in Simulated Physiological Media Investigated by electrochemical Impedance Spectroscopy, Biomaterials, 2003, 24, p 4213-4221

    Article  Google Scholar 

  35. S.C. Cachinho and R.N. Correia, Titanium Scaffolds for Osteointegration: Mechanical, In Vitro and Corrosion Behaviour, J. Mater. Sci., 2008, 19, p 451-457

    Google Scholar 

  36. A. Parsapour, S.N. Khorasani, and M.H. Fathi, Effect of Surface Treatment and Metallic Coating on Corrosion Behavior and Biocompatibility of Surgical 316L Stainless Steel Implant, J. Mater. Sci. Technol., 2012, 28, p 125-131

    Article  Google Scholar 

  37. S.J. Kalita, A. Bhardwaj, and H.A. Bhatt, Nanocrystalline Calcium Phosphate Ceramics in Biomedical Engineering, Mater. Sci. Eng. C, 2007, 27, p 441-449

    Article  Google Scholar 

  38. J. Oyedele and M. Collins, Composition Dependence of the Order-Disorder Transition in Iron-Cobalt Alloys, Phys. Rev. B, 1977, 16, p 3208

    Article  Google Scholar 

  39. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, and T. Yamamuro, Solutions Able to Reproduce In Vivo Surface-Structure Changes in Bioactive Glass-Ceramic A-W3, J. Biomed. Mater. Res., 1990, 24, p 721-734

    Article  Google Scholar 

  40. G.-H. Lv, H. Chen, L. Li, E.-W. Niu, H. Pang, B. Zou, and S.-Z. Yang, Investigation of Plasma Electrolytic Oxidation Process on AZ91D Magnesium Alloy, Curr. Appl. Phys., 2009, 9, p 126-130

    Article  Google Scholar 

  41. H. Najafi, A. Nemati, and Z. Sadeghian, Crystallisation Kinetics of Hydroxyapatite Thin Films Prepared by Sol-Gel Process, Adv. Appl. Ceram., 2010, 109, p 313-317

    Article  Google Scholar 

  42. J. Dong, T. Uemura, H. Kojima, M. Kikuchi, J. Tanaka, and T. Tateishi, Application of Low-Pressure System to Sustain In Vivo Bone Formation in Osteoblast/Porous Hydroxyapatite Composite, Mater. Sci. Eng. C, 2001, 17, p 37-43

    Article  Google Scholar 

  43. C. Duan, J. Wang, S. Zhou, B. Feng, X. Lu, and J. Weng, Study on Phase Transformation and Controllable Synthesis of Calcium Phosphate Using A Sol-Gel Approach, J. Sol-Gel. Sci. Technol., 2012, 63, p 126-134

    Article  Google Scholar 

  44. P. Franco, C. João, J. Silva, and J. Borges, Electrospun Hydroxyapatite Fibers from a Simple Sol-Gel System, Mater. Lett., 2012, 67, p 233-236

    Article  Google Scholar 

  45. N. Sato, T. Kuwana, M. Yamamoto, H. Suenaga, T. Anada, S. Koyama, O. Suzuki, and K. Sasaki, Bone Response to Immediate Loading Through Titanium Implants with Different Surface Roughness in Rats, Odontology, 2014, 102, p 249-258

    Article  Google Scholar 

  46. P. Amaravathy, S. Sowndarya, S. Sathyanarayanan, and N. Rajendran, Novel Sol Gel Coating of Nb2O5 on Magnesium Alloy for Biomedical Applications, Surf. Coat. Technol., 2014, 244, p 131-141

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the Ministry of Higher Education of Malaysia for the financial support and the Faculty of Mechanical Engineering, Universiti Teknologi Malaysia for providing the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kheimehsari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kheimehsari, H., Izman, S. & Shirdar, M.R. Effects of HA-Coating on the Surface Morphology and Corrosion Behavior of a Co-Cr-Based Implant in Different Conditions. J. of Materi Eng and Perform 24, 2294–2302 (2015). https://doi.org/10.1007/s11665-015-1517-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1517-y

Keywords

Navigation