Skip to main content

Advertisement

Log in

Effect of Electrophoretic Deposition Parameters on the Corrosion Behavior of Hydroxyapatite-Coated Cobalt–Chromium Using Response Surface Methodology

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Cobalt–chromium (Co–Cr)-based alloys have been used extensively as medical implants, but the ion release and the corrosion products can affect their mechanical integrity and biocompatibility. One of the solutions is to surface coat the substrate with hydroxyapatite via electrophoretic deposition technique. Two variables—pH of electrolyte and current density—were used to examine the electrochemical behavior of the coated sample. An experimental strategy was developed based on the response surface methodology together with the analysis of variance to verify the precision of the mathematical models and their relative parameters. Close agreement was observed between the predicted models and the experimental results. The pH value of electrolyte was a more significant factor than current density in increasing the corrosion potential (E corr) of the substrate. The maximum E corr was obtained with a current density of 12 mA cm−2 and a pH value of 4.71.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rahaman M.N., Yao A., Sonny Bal B., Garino J.P., Ries M.D.: Ceramics for prosthetic hip and knee joint replacement. J. Am. Ceram. Soc. 90(7), 1965–1988 (2007)

    Article  Google Scholar 

  2. Zeh A., Planert M., Siegert G., Lattke P., Held A., Hein W.: Release of cobalt and chromium ions into the serum following implantation of the metal-on-metal maverick-type artificial lumbar disc (medtronic sofamor danek). Spine 32(3), 348–352 (2007)

    Article  Google Scholar 

  3. Michael P., Sievert C., Andermatt D., Frigg R., Kronen P., Klein K., Stübinger S. et al.: Osseointegration and biocompatibility of different metal implants—a comparative experimental investigation in sheep. BMC Musculoskelet. Disord. 13(1), 32 (2012)

    Article  MATH  Google Scholar 

  4. Mohedano M., Matykina E., Arrabal R., Pardo A., Merino M.C.: Metal release from ceramic coatings for dental implants. Dental Mater. 30, e28–e40 (2014)

    Article  Google Scholar 

  5. Kheimehsari, H.; Izman, S.; Shirdar, M.R.: Effects of HA-coating on the surface morphology and corrosion behavior of a Co–Cr-based implant in different conditions. J. Mater. Eng. Perform. 24(6), 2294–2302 (2015)

  6. Aksakal B., Gavgali M., Dikici B.: The effect of coating thickness on corrosion resistance of hydroxyapatite coated Ti6Al4V and 316L SS implants. J. Mater. Eng. Perform. 19(6), 894–899 (2010)

    Article  Google Scholar 

  7. Sarkar A., Kannan S.: In situ synthesis, fabrication and Rietveld refinement of the hydroxyapatite/titania composite coatings on 316L SS. Ceram. Int. 40(5), 6453–6463 (2014)

    Article  Google Scholar 

  8. Taheri, M.M.; Abdul Kadir, M.R.; Shokuhfar, T.; Hamlekhan, A.; Assadian, M.; Shirdar, M.R.; Mirjalili, A.: Surfactant-assisted hydrothermal synthesis of Fluoridated Hydroxyapatite nanorods. Ceram. Int. (2015). doi:10.1016/j.ceramint.2015.04.061

  9. Goodman S. B., Yao Z., Keeney M., Yang F.: The future of biologic coatings for orthopaedic implants. Biomaterials 34(13), 3174–3183 (2013)

    Article  Google Scholar 

  10. Sun R.X., Lu Y.P., Li M.S.: Formation of hollow spheres of hydroxyapatite in plasma spraying. Surf. Eng. 19(5), 392–394 (2003)

    Article  Google Scholar 

  11. Ma J., Wong H., Kong L.B., Peng K.W.: Biomimetic processing of nanocrystallite bioactive apatite coating on titanium. Nanotechnology 14(6), 619 (2003)

    Article  Google Scholar 

  12. Thair L., Ismaeel T., Ahmed B., Swadi A.K.: Development of apatite coatings on Ti-6Al-7Nb dental implants by biomimetic process and EPD: in vivo studies. Surf. Eng. 27(1), 11–18 (2011)

    Article  Google Scholar 

  13. Sureshbabu S., Komath M., Shibli S.M.A., Varma H.K.: Biomimetic deposition of hydroxyapatite on titanium with help of sol–gel grown calcium pyrophosphate prelayer. Mater. Res. Innov. 15(3), 178–184 (2011)

    Article  Google Scholar 

  14. Arafat A., Idris M.H., Abdul Kadir M.R., Jafari H.: Characterisation of calcium phosphate coating on investment cast 316L stainless steel. Mater. Res. Innov. 18(s2), 886–891 (2014)

    Article  Google Scholar 

  15. Jafari S., Taheri M.M., Idris J.: Bioactive Coating on Stainless Steel 316 L through sol–gel Method. Adv. Mater. Res. 383, 3944–3948 (2012)

    Google Scholar 

  16. Jafari S., Taheri M.M., Idris J.: Thick hydroxyapatite coating on Ti-6Al-4V through sol–gel method. Adv. Mater. Res. 341, 48–52 (2012)

    Google Scholar 

  17. Chen F., Lam W.M., Lin C.J., Qiu G.X., Wu Z.H., Luk K.D.K., Lu W.W.: Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface: in vitro evaluation using mesenchymal stem cells. J. Biomed. Mater. Res. Part B Appl. Biomater. 82(1), 183–191 (2007)

    Article  Google Scholar 

  18. Eliaz N., Sridhar T.M., Kamachi Mudali U., Raj Baldev: Electrochemical and electrophoretic deposition of hydroxyapatite for orthopaedic applications. Surf. Eng. 21(3), 238–242 (2005)

    Article  Google Scholar 

  19. Besra L., Liu M.: A review on fundamentals and applications of electrophoretic deposition (EPD). Progr. Mater. Sci. 52(1), 1–61 (2007)

    Article  Google Scholar 

  20. Bhawanjali S., Revathi A., Popat K.C., Geetha M.: Surface modification of Ti-13Nb-13Zr and Ti-6Al-4V using electrophoretic deposition (EPD) for enhanced cellular interaction. Mater. Technol. Adv. Biomater. 29(B1), B54–B58 (2014)

    Google Scholar 

  21. Wang B., Huang P., Ou C., Li K., Yan B., Lu W.: In vitro corrosion and cytocompatibility of ZK60 magnesium alloy coated with hydroxyapatite by a simple chemical conversion process for orthopedic applications. Int. J. Mol. Sci. 14(12), 23614–23628 (2013)

    Article  Google Scholar 

  22. Lu W., Chen Z., Huang P., Yan P., Yan B.: Microstructure, corrosion resistance and biocompatibility of biomimetic HA-based Ca-P coatings on ZK60 magnesium alloy. Int. J. Electrochem. Sci. 7, 12668–12679 (2012)

    Google Scholar 

  23. Abdeltawab A.A., Shoeib M.A., Mohamed S.G.: Electrophoretic deposition of hydroxyapatite coatings on titanium from dimethylformamide suspensions. Surf. Coat. Technol. 206(1), 43–50 (2011)

    Article  Google Scholar 

  24. Kollath V.O., Chen Q., Closset R., Luyten J., Traina K., Mullens S., Boccaccini A.R., Cloots R.: AC vs DC electrophoretic deposition of hydroxyapatite on titanium. J. Eur. Ceram. Soc. 33(13), 2715–2721 (2013)

    Article  Google Scholar 

  25. Hsiang S.-H., Lin Y.-W.: Optimization of the extrusion process for magnesium alloy sheets using the Fuzzy-based Taguchi method. Arab. J. Sci. Eng. 34(1), 175–185 (2009)

    MathSciNet  Google Scholar 

  26. Eşme U.: Application of Taguchi method for the optimization of resistance spot welding process. Arab. J. Sci. Eng. 34(2), 519 (2009)

    Google Scholar 

  27. Bakhsheshi-Rad H.R., Idris M.H., Abdul-Kadir M.R.: Synthesis and in vitro degradation evaluation of the nano-HA/MgF 2 and DCPD/MgF 2 composite coating on biodegradable Mg–Ca–Zn alloy. Surf. Coat. Technol. 222, 79–89 (2013)

    Article  Google Scholar 

  28. Shirdar, M.R.; Izman, S.; Taheri, M.M.; Assadian, M.; Kadir, M.R.A.: Effect of post-treatment techniques on corrosion and wettability of hydroxyapatite-coated Co–Cr–Mo alloy. Arab. J. Sci. Eng. 40(4), 1197–1203 (2015)

  29. Saud S.N., Hamzah E., Abubakar T., Bakhsheshi-Rad H.R., Farahany S., Abdolahi A., Taheri M.M.: Influence of Silver nanoparticles addition on the phase transformation, mechanical properties and corrosion behaviour of Cu–Al–Ni shape memory alloys. J. Alloys Compd. 612, 471–478 (2014)

    Article  Google Scholar 

  30. Montgomery D.C.: Design and Analysis of Experiments, 7th edn. Wiley, Singapore (2009)

    Google Scholar 

  31. Garg M.P., Jain A., Bhushan G.: Multi-objective Optimization of Process Parameters in Wire Electric Discharge Machining of Ti-6-2-4-2 Alloy. Arab. J. Sci. Eng. 39(2), 1465–1476 (2014)

    Article  Google Scholar 

  32. Noordin M.Y., Venkatesh V.C., Sharif S., Elting S., Abdullah A.: Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. J. Mater. Process. Technol. 145(1), 46–58 (2004)

    Article  Google Scholar 

  33. Assadian, M.; Rezazadeh Shirdar, M.; Idris, Mohd.H.; Izman, S.; Almasi, D.; Taheri, M.M.; Abdul Kadir, M.R.: Optimisation of electrophoretic deposition parameters in coating of metallic substrate by hydroxyapatite using response surface methodology. Arab. J. Sci. Eng. 40(3), 923–933 (2015)

  34. Shirdar M.R. et al.: The application of surface response methodology to the pretreatment of WC substrates prior to diamond coating. J. Mater. Eng. Perform. 23(1), 13–24 (2014)

    Article  Google Scholar 

  35. Dorozhkin S.V.: A review on the dissolution models of calcium apatites. Progr. Cryst. Growth Charact. Mater. 44(1), 45–61 (2002)

    Article  Google Scholar 

  36. Jamesh M., Kumar S., Sankara Narayanan T.S.N.: Electrodeposition of hydroxyapatite coating on magnesium for biomedical applications. J. Coat. Technol. Res. 9(4), 495–502 (2012)

    Article  Google Scholar 

  37. Meejoo S., Maneeprakorn W., Winotai P.: Phase and thermal stability of nanocrystalline hydroxyapatite prepared via microwave heating. Thermochim. Acta 447(1), 115–120 (2006)

    Article  Google Scholar 

  38. Kuo M.C., Yen S.K.: The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Mater. Sci. Eng. C 20(1), 153–160 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Rafiq Abdul Kadir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirdar, M.R., Izman, S., Taheri, M.M. et al. Effect of Electrophoretic Deposition Parameters on the Corrosion Behavior of Hydroxyapatite-Coated Cobalt–Chromium Using Response Surface Methodology. Arab J Sci Eng 41, 591–598 (2016). https://doi.org/10.1007/s13369-015-1700-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1700-3

Keywords

Navigation