Skip to main content
Log in

Atomistic investigation of crack growth resistance in a single-crystal Al-nanoplate

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The fracture behavior of a single-crystal Al-nanoplate with an edge crack under tensile loading was simulated using a molecular statics technique to evaluate crack growth resistance in Al. The crack length was determined using a stiffness method. A parabolic function fitted from simulation results was used to predict the crack length from the stiffness value extracted from unloading curves. Based on energy considerations, crack growth resistance was calculated. Crack growth resistance rose sharply in the initial stages of crack growth, and with an additional crack extension, it increased gradually to converge to a constant far exceeding the fracture toughness predicted by the Griffith criterion. This trend in the crack growth resistance curve was closely related to the amorphous zone formed at the crack tip after the onset of crack propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. A. Stranz, A. Waag, and E. Peiner: Thermal characterization of vertical silicon nanowires. J. Mater. Res. 26, 1958 (2011).

    Article  CAS  Google Scholar 

  2. L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu: Ultrahigh strength and high electrical conductivity in copper. Science 304, 422 (2004).

    Article  CAS  Google Scholar 

  3. A.S. Alexandrov and V.V. Kabanov: Magnetic quantum oscillations in nanowires. Phys. Rev. Lett. 95, 76601 (2005).

    Article  CAS  Google Scholar 

  4. X.R. Zhuo and H.G. Beom: Molecular statics simulations of the size-dependent mechanical properties of copper nanofilms under shear loading. Comput. Mater. Sci. 99, 390 (2015).

    Article  CAS  Google Scholar 

  5. D.J. Maxwell, S.R. Emory, and S. Nie: Nanostructured thin-film materials with surface-enhanced optical properties. Chem. Mater. 13, 1082 (2001).

    Article  CAS  Google Scholar 

  6. Y. Cui, Q. Wei, H. Park, and C.M. Lieber: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289 (2001).

    Article  CAS  Google Scholar 

  7. K. Jensen, C. Girit, W. Mickelson, and A. Zettl: Tunable nanoresonators constructed from telescoping nanotubes. Phys. Rev. Lett. 96, 215503 (2006).

    Article  CAS  Google Scholar 

  8. O. Sul and E. Yang: A multi-walled carbon nanotube–aluminum bimorph nanoactuator. Nanotechnology 20, 95502 (2009).

    Article  Google Scholar 

  9. S.B. Legoas, V.R. Coluci, S.F. Braga, P.Z. Coura, S.O. Dantas, and D.S. Galvao: Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators. Phys. Rev. Lett. 90, 55504 (2003).

    Article  CAS  Google Scholar 

  10. Z.L. Wang and J. Song: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242 (2006).

    Article  CAS  Google Scholar 

  11. M.J. Buehler, F.F. Abraham, and H. Gao: Hyperelasticity governs dynamic fracture at a critical length scale. Nature 426, 141 (2003).

    Article  CAS  Google Scholar 

  12. J. Diao, K. Gall, and M.L. Dunn: Surface-stress-induced phase transformation in metal nanowires. Nat. Mater. 2, 656 (2003).

    Article  CAS  Google Scholar 

  13. C.B. Cui and H.G. Beom: Molecular dynamics simulations of edge cracks in copper and aluminum single crystals. Mater. Sci. Eng., A 609, 102 (2014).

    Article  CAS  Google Scholar 

  14. X.R. Zhuo and H.G. Beom: Size-dependent fracture properties of cracked silicon nanofilms. Mater. Sci. Eng., A 636, 470 (2015).

    Article  CAS  Google Scholar 

  15. D. Farkas: Fracture resistance of nanocrystalline Ni. Metall. Mater. Trans. A 38, 2168 (2007).

    Article  Google Scholar 

  16. D. Farkas, H. Van Swygenhoven, and P.M. Derlet: Intergranular fracture in nanocrystalline metals. Phys. Rev. B: Condens. Matter Mater. Phys. 66, 60101 (2002).

    Article  Google Scholar 

  17. R.K. Kalia, A. Nakano, A. Omeltchenko, K. Tsuruta, and P. Vashishta: Role of ultrafine microstructures in dynamic fracture in nanophase silicon nitride. Phys. Rev. Lett. 78, 2144 (1997).

    Article  CAS  Google Scholar 

  18. K.L. Baker and D.H. Warner: Extended timescale atomistic modeling of crack tip behavior in aluminum. Modell. Simul. Mater. Sci. Eng. 20, 65005 (2012).

    Article  Google Scholar 

  19. H. Krull and H. Yuan: Suggestions to the cohesive traction–separation law from atomistic simulations. Eng. Fract. Mech. 78, 525 (2011).

    Article  Google Scholar 

  20. M. Ippolito, A. Mattoni, N. Pugno, and L. Colombo: Failure strength of brittle materials containing nanovoids. Phys. Rev. B: Condens. Matter Mater. Phys. 75, 224110 (2007).

    Article  Google Scholar 

  21. Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos: Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B: Condens. Matter Mater. Phys. 59, 3393 (1999).

    Article  CAS  Google Scholar 

  22. D.H. Tsai: The virial theorem and stress calculation in molecular dynamics. J. Chem. Phys. 70, 1375 (1979).

    Article  CAS  Google Scholar 

  23. A.K. Subramaniyan and C.T. Sun: Continuum interpretation of virial stress in molecular simulations. Int. J. Solids Struct. 45, 4340 (2008).

    Article  Google Scholar 

  24. S. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

  25. J. Li: AtomEye: An efficient atomistic configuration viewer. Modell. Simul. Mater. Sci. Eng. 11, 173 (2003).

    Article  Google Scholar 

  26. D. Farkas, M. Duranduru, W.A. Curtin, and C. Ribbens: Multiple-dislocation emission from the crack tip in the ductile fracture of Al. Philos. Mag. A 81, 1241 (2001).

    Article  CAS  Google Scholar 

  27. R.G. Hoagland, M.S. Daw, S.M. Foiles, and M.I. Baskes: An atomic model of crack tip deformation in aluminum using an embedded atom potential. J. Mater. Res. 5, 313 (1990).

    Article  CAS  Google Scholar 

  28. H. Kimizuka, H. Kaburaki, F. Shimizu, and J. Li: Crack-tip dislocation nanostructures in dynamical fracture of fcc metals: A molecular dynamics study. J. Comput.-Aided Mol. Des. 10, 143 (2003).

    CAS  Google Scholar 

  29. A. Stukowski and K. Albe: Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modell. Simul. Mater. Sci. Eng. 18, 85001 (2010).

    Article  Google Scholar 

  30. T.L. Anderson: Fracture Mechanics: Fundamentals and Applications, 3rd ed. (CRC Press, Boca Raton, 2005).

    Book  Google Scholar 

  31. J. Eftis and H. Liebowitz: On fracture toughness evaluation for semi-brittle fracture. Eng. Fract. Mech. 7, 101 (1975).

    Article  Google Scholar 

  32. A.A. Griffith: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. A. 221, 163 (1921).

    Google Scholar 

  33. L. Hung and E.A. Carter: Ductile processes at aluminium crack tips: Comparison of orbital-free density functional theory with classical potential predictions. Modell. Simul. Mater. Sci. Eng. 19, 45002 (2011).

    Article  Google Scholar 

  34. P. White: Molecular dynamic modelling of fatigue crack growth in aluminium using LEFM boundary conditions. Int. J. Fatigue. 44, 141 (2012).

    Article  CAS  Google Scholar 

  35. R.G. Hoagland, M.S. Daw, and J.P. Hirth: Some aspects of forces and fields in atomic models of crack tips. J. Mater. Res. 6, 2565 (1991).

    Article  CAS  Google Scholar 

  36. A.K. Nair, D.H. Warner, and R.G. Hennig: Coupled quantum–continuum analysis of crack tip processes in aluminum. J. Mech. Phys. Solids 59, 2476 (2011).

    Article  CAS  Google Scholar 

  37. G.E. Beltz, D.M. Lipkin, and L.L. Fischer: Role of crack blunting in ductile versus brittle response of crystalline materials. Phys. Rev. Lett. 82, 4468 (1999).

    Article  CAS  Google Scholar 

  38. F.J. Gómez and M. Elices: Fracture loads for ceramic samples with rounded notches. Eng. Fract. Mech. 73, 880 (2006).

    Article  Google Scholar 

  39. R.G. Hoagland: Crystallographic aspects of dislocation emission from a crack tip in an fcc metal. Philos. Mag. A 76, 543 (1997).

    Article  CAS  Google Scholar 

  40. W.W. Gerberich, H. Huang, W. Zielinski, and P.G. Marsh: A dislocation shielding prediction of the toughness transition during cleavage of semibrittle crystals. Metall. Mater. Trans. A 24, 535 (1993).

    Article  Google Scholar 

  41. V. Tvergaard and J.W. Hutchinson: Effect of strain-dependent cohesive zone model on predictions of crack growth resistance. Int. J. Solids Struct. 33, 3297 (1996).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Republic of Korea (NRF-2013R1A1A2A10008799).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeon Gyu Beom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuo, X.R., Kim, J.H. & Beom, H.G. Atomistic investigation of crack growth resistance in a single-crystal Al-nanoplate. Journal of Materials Research 31, 1185–1192 (2016). https://doi.org/10.1557/jmr.2016.155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.155

Navigation