Skip to main content
Log in

A dislocation shielding prediction of the toughness transition during cleavage of semibrittle crystals

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

An interconnected set of observations assesses current equilibrium models of the ductile-brittle-transition temperature (DBTT). This involvesin situ transmission electron microscopy (TEM) studies of crack-tip dislocations in single and polycrystals and bulk fracture toughness tests at various temperatures. Beyond KI values of 8 MPa · m1/2 in both iron-base single and polycrystals, large numbers of redundant dislocations are created, as postulated recently by Weertman. [38] Still, the necessary shielding dislocations, as required by equilibrium, can be detected at values as high as 20 and 40 MPa · m1/2 byex situ TEM and electron channeling, respectively. In addition, the close approach of dislocations to the crack tip in some of the studies, as opposed to others, suggests that large dislocation free zones (DFZ) are a thin-film artifact. However, a failure criterion based partly on the Rice-Thomson model’21 is both consistent with the absence of a large DFZ and observed fracture toughness variations with test temperature. It is emphasized that this toughness transition is entirely in the semibrittle regime where cleavage is the failure mode. Nevertheless,K lc values increase from 3 to 60 MPa·m1/2 with an increase in test temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Griffith:Phil. Trans. R. Soc., London A, 1920, vol. 221, p. 163.

    Article  Google Scholar 

  2. J.R. Rice and R. Thomson:Phil. Mag., 1974, vol. 29, p. 73.

    CAS  Google Scholar 

  3. C. Atkinson and D.L. Clements:Acta Metall., 1973, vol. 21, p. 55.

    Article  Google Scholar 

  4. M. Lii and W.W. Gerberich:Scripta Metall., 1988, vol. 22, p. 1779.

    Article  Google Scholar 

  5. X. Chen, T. Foecke, M. Lii, Y. Katz, and W.W. Gerberich:Eng. Fract. Mech., 1989, vol. 35, p. 997.

    Article  Google Scholar 

  6. M. Lii, T. Foecke, X.F. Chen, W. Zielinski, and W.W. Gerberich:Mater. Sci. Eng., 1989, vol. A113, p. 327.

    CAS  Google Scholar 

  7. M.J. Lii, X.F. Chen, Y. Katz, and W.W. Gerberich:Acta Metall., 1990, vol. 38, p. 2435.

    Article  CAS  Google Scholar 

  8. H. Neuber:Kerbspannungs Lehre, Verlag Julius Springer, Berlin, 1937.

    Google Scholar 

  9. G.I. Taylor:Proc. R. Soc, London A, 1934, vol. 145, p. 362.

    Article  CAS  Google Scholar 

  10. J.N. Sneddon:Proc. Phys. Soc. London, 1946, vol. 187, p. 229.

    Google Scholar 

  11. E. Orowan:Trans. Inst. Eng. Shipbuilder Scot., 1945, vol. 89, p. 165.

    CAS  Google Scholar 

  12. E. Orowan:Rept. Prog. Phys., 1949, vol. 12, p. 214.

    Article  Google Scholar 

  13. R. Hill:J. Mech. Phys. Solids, 1952, vol. 1, p. 19.

    Article  Google Scholar 

  14. C. Zener:Fracturing of Metals, ASM, Cleveland, OH, 1948, p. 3.

    Google Scholar 

  15. A.N. Stroh:Phil. Mag., 1958, vol. 3, p. 625.

    Article  CAS  Google Scholar 

  16. A.H. Cottrell:Trans. AIME, 1958, vol. 212, p. 192.

    CAS  Google Scholar 

  17. N.J. Petch:Phil. Mag., 1958, vol. 3, p. 1089.

    Google Scholar 

  18. D.S. Dugdale:J. Mech. Phys. Solids, 1960, vol. 8, p. 100.

    Article  Google Scholar 

  19. B.A. Bilby, A.H. Cottrell, and K.H. Swinden:Proc. R. Soc, London A, 1963, vol. 272, p. 304.

    Google Scholar 

  20. J.W. Hutchinson:J. Mech. Phys. Solids, 1968, vol. 16, pp. 13 and 337; J.R. Rice and G. Rosengren: J. Mech. Phys. Solids, 1968, vol. 16, p. 1.

    Article  Google Scholar 

  21. A.S. Tetelman:Fracture of Solids, Interscience, New York, NY, 1963, p. 461.

    Google Scholar 

  22. R.O. Ritchie, J.F. Knott, and J.R. Rice:J. Mech. Phys. Solids, 1973, vol. 21, p. 395.

    Article  CAS  Google Scholar 

  23. See4th, 5th, and 6th Int. Conf. on Fracture, Waterloo, Canada, 1977; Cannes, France, 1981; and New Delhi, India, 1984, for example.

  24. I.H. Lin and R. Thomson:Acta Metall., 1986, vol. 34, p. 187.

    Article  CAS  Google Scholar 

  25. J. Weertman:Acta Metall., 1978, vol. 26, p. 1731.

    Article  Google Scholar 

  26. S.H. Dai and J.C.M. Li:Scripta Metall., 1982, vol. 16, p. 183.

    Article  CAS  Google Scholar 

  27. J.A. Horton and S.M. Ohr:J. Mater. Sci., 1982, vol. 17, p. 3140.

    Article  Google Scholar 

  28. S.M. Ohr:Mater. Sci. Eng., 1985, vol. 72, p. 1.

    Article  CAS  Google Scholar 

  29. K.Y. Chia and S.J. Burns: inFracture: Measurement of Localized Deformation by Novel Techniques, W.W. Gerberich and D.L. Davidson, eds., TMS-AIME, Warrendale, PA, 1985, p. 153.

    Google Scholar 

  30. W.W. Gerberich, D.L. Davidson, and M. Kaczorowski:J. Mech. Phys. Solids, 1990, vol. 38, p. 87.

    Article  Google Scholar 

  31. S.H. Chen, Y. Katz, and W.W. Gerberich:Phil. Mag. A, 1991, vol. 63, p. 131.

    CAS  Google Scholar 

  32. W.W. Gerberich, S.H. Chen, C.S. Lee, and T. Livne:Metall. Trans. A, 1987, vol. 18A, pp. 1861–75.

    CAS  Google Scholar 

  33. T. Foecke, P.G. Marsh, and W.W. Gerberich: unpublished research, 1992.

  34. W.W. Gerberich, A.G. Wright, E. Kurman, and K.A. Peterson: inFracture: Measurement of Localized Deformation by Novel Techniques, W.W. Gerberich and D.L. Davidson, eds., TMS-AIME, Warrendale, PA, 1985, p. 59.

    Google Scholar 

  35. Y.T. Chen, D.G. Atteridge, and W.W. Gerberich:Acta Metall., 1981, vol. 29, p. 1171.

    Article  CAS  Google Scholar 

  36. X. Chen and W.W. Gerberich:Metall. Trans. A, 1991, vol. 22A, p. 59.

    CAS  Google Scholar 

  37. W. Zielinski, M.S. Lii, H. Huang, P. Marsh, and W.W. Gerberich:Acta Metall. Mater., 1992, vol. 40, Parts I-III, p. 2861.

    Article  CAS  Google Scholar 

  38. J. Weertman: inM. Fine Symposium, P.K. Liaw, J.R. Weertman, H.L. Marcus, and J.S. Santer, eds., TMS-AIME, Warrendale, PA, 1991, p. 339.

    Google Scholar 

  39. W.W. Gerberich, R.A. Oriani, M.-J. Lii, X. Chen, and T. Foecke:Phil. Mag. A, 1991, vol. 63, p. 363.

    CAS  Google Scholar 

  40. J.R. Rice:Proc Int. Conf. on Fracture, T. Yokobori, T. Kawasaki, and J.L. Swedlow, eds., Sendai, Japan, 1965, p. 309.

  41. P.B. Hirsch, S.G. Roberts, and J. Samuels:Proc R. Soc, London A, 1989, vol. 421, p. 25.

    CAS  Google Scholar 

  42. T. Foecke: Ph.D. Thesis, University of Minnesota, Minneapolis, MN, 1991.

    Google Scholar 

  43. M. Ellis: D. Phil. Thesis, University of Oxford, Oxford, United Kingdom, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium “Quasi-Brittle Fracture” presented during the TMS fall meeting, Cincinnati, OH, October 21–24, 1991, under the auspices of the TMS Mechanical Metallurgy Committee and the ASM/MSD Flow and Fracture Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerberich, W.W., Huang, H., Zielinski, W. et al. A dislocation shielding prediction of the toughness transition during cleavage of semibrittle crystals. Metall Trans A 24, 535–543 (1993). https://doi.org/10.1007/BF02656623

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02656623

Keywords

Navigation