Skip to main content
Log in

An Interphase Model for Retention in Liquid Chromatography

  • Reviews
  • Published:
JPC – Journal of Planar Chromatography – Modern TLC Aims and scope Submit manuscript

Summary

An interphase model for retention is appropriate for biphasic systems in which one phase (the mobile phase) modifies the properties of the other phase through absorption of mobile phase components. This is typical of liquid chromatography, where separation occurs by the distribution of sample components between a bulk mobile phase and an interphase region in intimate contact with the mobile phase. This has profound implications for the interpretation of retention mechanisms since the properties of the stationary phase are those of the interphase region, which can be quite different to those known or perceived for the nonsolvated stationary phase. For reversed-phase chromatography, it is shown that retention properties can be adequately described by the solvation parameter model and visualized as a function of the bulk mobile phase composition by system maps. For normal-phase chromatography, a modified approach is required for inorganic oxide adsorbents to accommodate site-specific interactions (localization of sample and/or mobile phase components) on high energy adsorption sites within the interphase region. This is achieved using a competition model approach to separate out the contributions of solvent and solute interactions with the adsorbent surface and the solvation parameter model to provide insight into the relative importance of various intermolecular interactions on retention and selectivity. The above discussion is set within the framework of thin-layer chromatography although the conclusions are general and equally applicable to column liquid chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.F. Poole, S.K. Poole, J. Chromatogr. A 792 (1997) 89–104.

    Article  CAS  Google Scholar 

  2. C.F. Poole, J. Chromatogr. A 807 (1998) 307–310.

    Article  CAS  Google Scholar 

  3. S.K. Poole, C.F. Poole, J. Chromatogr. A 1182 (2008) 1–24.

    Article  CAS  Google Scholar 

  4. C.F. Poole, The Essence of Chromatography, Elsevier, Amsterdam, 2003.

    Google Scholar 

  5. M. Wang, J. Mallette, J.F. Parcher, J. Chromatogr. A 1190 (2008) 1–7.

    Article  CAS  Google Scholar 

  6. B. Buszewski, S. Bocian, G. Rychlicki, P. Vajda, A. Felinger, J. Colloid Interface Sci. 349 (2010) 620–625.

    Article  CAS  Google Scholar 

  7. S. Buntz, M. Figus, Z. Liu, Y.V. Kazakevich, J. Chromatogr. A 1240 (2012) 104–112.

    Article  CAS  Google Scholar 

  8. S. Bocian, B. Buszewski, J. Sep. Sci. 35 (2012) 1191–1200.

    Article  CAS  Google Scholar 

  9. J. Nowrocki, J. Chromatogr. A 779 (1997) 29–71.

    Article  Google Scholar 

  10. D.V. McCalley, J. Chromatogr. A 1217 (2010) 858–880.

    Article  CAS  Google Scholar 

  11. MM. Abraham, C.F. Poole, S.K. Poole, J. Chromatogr. A 842 (1999) 79–114.

    Article  CAS  Google Scholar 

  12. C.F. Poole, J. Environ. Monit. 7 (2005) 577–580.

    Article  CAS  Google Scholar 

  13. Q. Li, C.F. Poole, Chromatographia 52 (2000) 639–647.

    Article  CAS  Google Scholar 

  14. C.F. Poole, T.C. Ariyasena, N. Lenca, J. Chromatogr. A 1317 (2013) 85–104.

    Article  CAS  Google Scholar 

  15. C.F. Poole, T. Karunasekara, J. Planar Chromatogr. 25 (2012) 190–199.

    Article  CAS  Google Scholar 

  16. C.F. Poole, T. Karunasekara, T.C. Ariyasena, J. Sep. Sci. 36 (2013) 96–109.

    Article  CAS  Google Scholar 

  17. C.F. Poole, S.K. Poole, J. Chromatogr. A 965 (2002) 263–299.

    Article  CAS  Google Scholar 

  18. MM. Abraham, Chem. Soc. Revs. 22 (1993) 73–83.

    Article  CAS  Google Scholar 

  19. C.F. Poole, S.N. Atapattu, S.K. Poole, A.N. Bell, Anal. Chim. Acta 652 (2009) 32–53.

    Article  CAS  Google Scholar 

  20. MM. Abraham, A. Ibrahim, A.M. Zissmos, J. Chromatogr. A 1037 (2004) 29–47.

    Article  CAS  Google Scholar 

  21. C.F. Poole, N.C. Dias, J. Chromatogr. A 892 (2000) 123–142.

    Article  CAS  Google Scholar 

  22. W. Kiridena, C.F. Poole, J. Planar Chromatogr. 12 (1999) 13–25.

    CAS  Google Scholar 

  23. W. Kiridena, C.F. Poole, J. Chromatogr. A 802 (1998) 335–347.

    Article  CAS  Google Scholar 

  24. N.C. Dias, C.F. Poole, J. Planar Chromatogr. 13 (2000) 337–347.

    CAS  Google Scholar 

  25. C.F. Poole, A.D. Gunatilleka, S.K. Poole, Adv. Chromatogr. 40 (2000) 159–230.

    CAS  PubMed  Google Scholar 

  26. L. Komsta, Anal. Chim. Acta 593 (2007) 224–237.

    Article  CAS  Google Scholar 

  27. M.M. Abraham, C.F. Poole, S.K. Poole, J. Chromatogr. A 749 (1996) 201–210.

    Article  CAS  Google Scholar 

  28. R. Kaliszan, Chem. Rev. 107 (2007) 3212–3246.

    Article  CAS  Google Scholar 

  29. K Heberger, J. Chromatogr. A 1158 (2007) 273–305.

    Article  CAS  Google Scholar 

  30. C. Giaginis, A. Tsantili-Kakoulidou, Chromatographia 76 (2013) 211–266.

    Article  CAS  Google Scholar 

  31. L.R. Snyder, J.W. Dolan, in: S. Fanali, P.R. Haddad, C.F. Poole, P. Schoenmakers, D. Lloyd (eds.), Liquid Chromatography: Fundamentals and Instrumentation, Elsevier, Amsterdam, 2013, pp. 143–156.

    Chapter  Google Scholar 

  32. W. Kiridena, C.F. Poole, Analyst 123 (1998) 1265–1270.

    Article  CAS  Google Scholar 

  33. N.C. Dias, C.F. Poole, J. Planar Chromatogr. 14 (2001) 160–174.

    CAS  Google Scholar 

  34. L.R. Snyder, J. Planar Chromatogr. 21 (2008) 315–323.

    Article  CAS  Google Scholar 

  35. L.R. Snyder, J. Planar Chromatogr. 25 (2012) 184–189.

    Article  CAS  Google Scholar 

  36. R.P.W. Scott, P. Kucera, J. Chromatogr. 171 (1979) 37–48.

    Article  CAS  Google Scholar 

  37. L.R. Snyder, Principles of Adsorption Chromatography, Marcel Dekker, New York, NY, 1968.

    Google Scholar 

  38. S.K. Poole, C.F. Poole, Chromatographia 53 (2001) S162–S166.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin F. Poole.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poole, C.F. An Interphase Model for Retention in Liquid Chromatography. JPC-J Planar Chromat 28, 98–105 (2015). https://doi.org/10.1556/JPC.28.2015.2.3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/JPC.28.2015.2.3

Key Words

Navigation