Skip to main content

Characterization of Nanoparticles by FTIR and FTIR-Microscopy

  • Living reference work entry
  • First Online:
Handbook of Consumer Nanoproducts

Abstract

One of the most important analytical techniques available to today’s scientists is infrared spectroscopy. Infrared spectroscopy has the advantage of being able to study virtually every sample in virtually any state. With the right sampling method, liquids, solutions, pastes, powders, films, fibers, gases, and surfaces can all be tested. As a result of the improved instrumentation, a number of new sensitive techniques for examining previously intractable samples have been developed.

The Fourier transform infrared (FTIR) method is a type of spectroscopy that can detect changes in the total composition of biomolecules by determining changes in functional groups. The vibration and rotation of molecules influenced by infrared radiation at a particular wavelength is measured using FTIR. This method identifies structural differences in molecular binding between entities, which can reveal details about the existence of their interactions. Transmittance FTIR, attenuated total reflectance (ATR–FTIR), and micro-spectroscopy FTIR are the most popular FTIR-based methods for characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Al-Holy MA, Lin M, Cavinato AG, Rasco BA (2006) The use of Fourier transform infrared spectroscopy to differentiate Escherichia coli O157: H7 from other bacteria inoculated into apple juice. Food Microbiol 23(2):162–168

    Article  CAS  Google Scholar 

  2. Alvarez-Ordóñez A, Halisch J, Prieto M (2010) Changes in Fourier transform infrared spectra of Salmonella enterica serovars Typhimurium and Enteritidis after adaptation to stressful growth conditions. Int J Food Microbiol 142(1–2):97–105

    Article  Google Scholar 

  3. Amarie S, Zaslansky P, Kajihara Y, Griesshaber E, Schmahl WW, Keilmann F (2012) Nano-FTIR chemical mapping of minerals in biological materials. Beilstein J Nanotechnol 3(1):312–323

    Article  CAS  Google Scholar 

  4. Barth A (2007) Infrared spectroscopy of proteins. Biochim. Biophys. Acta, Bioenerg 1767(9):1073–1101

    Article  CAS  Google Scholar 

  5. Berthomieu C, Hienerwadel R (2009) Fourier transform infrared (FTIR) spectroscopy. Photosynth Res 101(2):157–170

    Article  CAS  Google Scholar 

  6. Drozdz A, Matusiak K, Setkowicz Z, Ciarach M, Janeczko K, Sandt C, Borondics F, Horak D, Babic M, Chwiej J (2020) FTIR microspectroscopy revealed biochemical changes in liver and kidneys as a result of exposure to low dose of iron oxide nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 236:118355

    Article  CAS  Google Scholar 

  7. Dudala J, Bialas M, Surowka A, Bereza-Buziak M, Hubalewska-Dydejczyk A, Budzynski A, Pedziwiatr M, Kolodziej M, Wehbe K, Lankosz M (2015) Biomolecular characterization of adrenal gland tumors by means of SR-FTIR. Analyst 140(7):2101–2106

    Article  CAS  Google Scholar 

  8. Faghihzadeh F, Anaya NM, Schifman LA, Oyanedel-Craver V (2016) Fourier transform infrared spectroscopy to assess molecular-level changes in microorganisms exposed to nanoparticles. Nanotechnol Environ Eng 1(1):1

    Article  Google Scholar 

  9. Faghihzadeh F, Anaya NM, Schifman LA, Oyanedel-Craver V (2016) Fourier transform infrared spectroscopy to assess molecular-level changes in microorganisms exposed to nanoparticles. Nanotechnol Environ Eng 1(1):1

    Article  Google Scholar 

  10. Ivask A, Kurvet I, Kasemets K, Blinova I, Aruoja V, Suppi S, Vija H, Käkinen A, Titma T, Heinlaan M, Visnapuu M (2014) Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS One 9(7):e102108

    Article  Google Scholar 

  11. Kenkel S, Mittal S, Bhargava R (2020) Closed-loop atomic force microscopy-infrared spectroscopic imaging for nanoscale molecular characterization. Nat Commun 11(1):1–10

    Article  Google Scholar 

  12. Kochan K, Peleg AY, Heraud P, Wood BR (2020) Atomic force microscopy combined with infrared spectroscopy as a tool to probe single bacterium chemistry. JoVE J Visual Exp 163:e61728

    Google Scholar 

  13. Loutherback K, Birarda G, Chen L, Holman N, H.Y. (2016) Microfluidic approaches to synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy of living biosystems. Protein Pept Lett 23(3):273–282

    Article  CAS  Google Scholar 

  14. Mester L, Govyadinov AA, Chen S, Goikoetxea M, Hillenbrand R (2020) Subsurface chemical nanoidentification by nano-FTIR spectroscopy. Nat Commun 11(1):1–10

    Article  Google Scholar 

  15. Nallala J, Lloyd GR, Shepherd N, Stone N (2016) High-resolution FTIR imaging of colon tissues for elucidation of individual cellular and histopathological features. Analyst 141(2):630–639

    Article  CAS  Google Scholar 

  16. Naumann D, Helm D, Labischinski H (1991) Microbiological characterizations by FT-IR spectroscopy. Nature 351(6321):81–82

    Article  CAS  Google Scholar 

  17. Nguyen-Tri P, Ghassemi P, Carriere P, Nanda S, Assadi AA, Nguyen DD (2020) Recent applications of advanced atomic force microscopy in polymer science: a review. Polymers 12(5):1142

    Article  CAS  Google Scholar 

  18. Novak S, Drobne D, Vaccari L, Kiskinova M, Ferraris P, Birarda G, Remškar M, Hočevar M (2013) Effect of ingested tungsten oxide (WOx) nanofibers on digestive gland tissue of Porcellio scaber (Isopoda, Crustacea): Fourier Transform Infrared (FTIR) imaging. Environ Sci Technol 47(19):11284–11292

    Article  CAS  Google Scholar 

  19. Novak S, Romih T, Drašler B, Birarda G, Vaccari L, Ferraris P, Sorieul S, Zieba M, Sebastian V, Arruebo M, Hočevar SB (2019) The in vivo effects of silver nanoparticles on terrestrial isopods, Porcellio scabkk0n a dynamic interplay between shape, size and nanoparticle dissolution properties. Analyst 144(2):488–497

    Article  CAS  Google Scholar 

  20. Perro A, Lebourdon G, Henry S, Lecomte S, Servant L, Marre S (2016) Combining microfluidics and FT-IR spectroscopy: towards spatially resolved information on chemical processes. React Chem Eng 1(6):577–594

    Article  CAS  Google Scholar 

  21. Picquart M, Haro-Poniatowski E, Morhange JF, Jouanne M, Kanehisa M (2000) Low frequency vibrations and structural characterization of a murine IgG2a monoclonal antibody studied by Raman and IR spectroscopies. Biopolym Orig Res Biomol 53(4):342–349

    CAS  Google Scholar 

  22. Podstawka-Proniewicz E, Piergies N, Skołuba D, Kafarski P, Kim Y, Proniewicz LM (2011) Vibrational characterization of L-leucine phosphonate analogues: FT-IR, FT-Raman, and SERS spectroscopy studies and DFT calculations. Chem Eur J 115(40):11067–11078

    CAS  Google Scholar 

  23. Riddle JW, Kabler PW, Kenner BA, Bordner RH, Rockwood SW, Stevenson HJ (1956) Bacterial identification by infrared spectrophotometry. J Bacteriol 72(5):593

    Article  CAS  Google Scholar 

  24. Romih T, Drašler B, Jemec A, Drobne D, Novak S, Golobič M, Makovec D, Susič R, Kogej K (2015) Bioavailability of cobalt and iron from citric-acid-adsorbed CoFe2O4 nanoparticles in the terrestrial isopod Porcellio scaber. Sci Total Environ 508:76–84

    Article  CAS  Google Scholar 

  25. Romih T, Jemec A, Novak S, Vaccari L, Ferraris P, Šimon M, Kos M, Susič R, Kogej K, Zupanc J, Drobne D (2016) FTIR microscopy reveals distinct biomolecular profile of crustacean digestive glands upon subtoxic exposure to ZnO nanoparticles. Nanotoxicology 10(4):462–470

    Article  CAS  Google Scholar 

  26. Sreedhar H, Varma VK, Nguyen PL, Davidson B, Akkina S, Guzman G, Setty S, Kajdacsy-Balla A, Walsh MJ (2015) High-definition Fourier transform infrared (FT-IR) spectroscopic imaging of human tissue sections towards improving pathology. J Visual Exp JoVE 95

    Google Scholar 

  27. Stuart BH, (2004) Infrared spectroscopy: fundamental and applications. John Wiley & Sons

    Google Scholar 

  28. Sukprasert J, Thumanu K, Phung-on I, Jirarungsatean C, Erickson LE, Tuitemwong P, Tuitemwong K (2020) Synchrotron FTIR light reveals signal changes of biofunctionalized magnetic nanoparticle attachment on Salmonella sp. J Nanomater 2020

    Google Scholar 

  29. Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6(1):1769–1780

    Article  CAS  Google Scholar 

  30. Vongsvivut J, Truong VK, Al Kobaisi M, Maclaughlin S, Tobin MJ, Crawford RJ, Ivanova EP (2017) Synchrotron macro ATR-FTIR microspectroscopic analysis of silica nanoparticle-embedded polyester coated steel surfaces subjected to prolonged UV and humidity exposure. PLoS One 12(12):e0188345

    Article  Google Scholar 

More References

  • Aja M, Jaya M, Vijayakumaran Nair K, Joe IH (2014) FT-IR spectroscopy as a sentinel technology in earthworm toxicology. Spectrochim Acta A 120:534–541

    Google Scholar 

  • Bangaoil R, Santillan A, Angeles LM, Abanilla L, Lim A Jr, Ramos MC, Fellizar A, Guevarra L Jr, Albano PM (2020) ATR-FTIR spectroscopy as adjunct method to the microscopic examination of hematoxylin and eosin-stained tissues in diagnosing lung cancer. PLoS One 15(5):e0233626

    Article  CAS  Google Scholar 

  • Beć KB, Grabska J, Huck CW (2020) Biomolecular and bioanalytical applications of infrared spectroscopy – a review. Anal Chim Acta 1133:150–177

    Google Scholar 

  • Bellisola G, Sorio C (2012) Infrared spectroscopy and microscopy in cancer research and diagnosis. Am J Cancer Res 2(1):1

    CAS  Google Scholar 

  • Bellisola G, Della Peruta M, Vezzalini M, Moratti E, Vaccari L, Birarda G, Piccinini M, Cinque G, Sorio C (2010) Tracking InfraRed signatures of drugs in cancer cells by Fourier Transform microspectroscopy. Analyst 135(12):3077–3086

    Article  CAS  Google Scholar 

  • Chan KLA, Lekkas I, Frogley MD, Cinque G, Altharawi A, Bello G, Dailey LA (2020) Synchrotron photothermal infrared nanospectroscopy of drug-induced phospholipidosis in macrophages. Anal Chem 92(12):8097–8107

    Article  CAS  Google Scholar 

  • Chrabaszcz K, Jasztal A, Smęda M, Zieliński B, Blat A, Diem M, Chlopicki S, Malek K, Marzec KM (2018) Label-free FTIR spectroscopy detects and visualizes the early stage of pulmonary micrometastasis seeded from breast carcinoma. Biochim Biophys Acta (BBA) Mol Basis Dis 1864(11):3574–3584

    Article  CAS  Google Scholar 

  • Marcelli A, Cricenti A, Kwiatek WM, Petibois C (2012) Biological applications of synchrotron radiation infrared spectromicroscopy. Biotechnol Adv 30(6):1390–1404

    Article  CAS  Google Scholar 

  • Meireles LM, Barcelos ID, Ferrari GA, Neves PAADA, Freitas RO, Lacerda RG (2019) Synchrotron infrared nanospectroscopy on a graphene chip. Lab Chip 19(21):3678–3684

    Article  CAS  Google Scholar 

  • Mohamed HT, Untereiner V, Cinque G, Ibrahim SA, Götte M, Nguyen NQ, Rivet R, Sockalingum GD, Brézillon S (2020) Infrared microspectroscopy and imaging analysis of inflammatory and non-inflammatory breast cancer cells and their GAG secretome. Molecules 25(18):4300

    Article  CAS  Google Scholar 

  • Palaniappan PR, Pramod KS (2010) FTIR study of the effect of nTiO2 on the biochemical constituents of gill tissues of zebrafish (Danio rerio). Food Chem Toxicol 48:2337–2343

    Google Scholar 

  • Pereira L, Flores-Borges DN, Bittencourt PR, Mayer JL, Kiyota E, Araújo P, Jansen S, Freitas RO, Oliveira RS, Mazzafera P (2018) Infrared nanospectroscopy reveals the chemical nature of pit membranes in water-conducting cells of the plant xylem. Plant Physiol 177(4):1629–1638

    Article  CAS  Google Scholar 

  • Ramesh J, Salman A, Mordechai S, Argov S, Goldstein J, Sinelnikov I, Walfisch S, Guterman H (2001) FTIR microscopic studies on normal, polyp, and malignant human colonic tissues. Subsurf Sens Technol Appl 2(2):99–117

    Article  Google Scholar 

  • Ruggeri FS, Mannini B, Schmid R, Vendruscolo M, Knowles TP (2020) Single molecule secondary structure determination of proteins through infrared absorption nanospectroscopy. Nat Commun 11(1):1–9

    Article  Google Scholar 

  • Wang JS, Shi JS, Xu YZ, Duan XY, Zhang L, Wang J, Yang LM, Weng SF, Wu JG (2003) FT-IR spectroscopic analysis of normal and cancerous tissues of esophagus. World J Gastroenterol 9(9):1897

    Article  Google Scholar 

Websites

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Eid, M.M. (2021). Characterization of Nanoparticles by FTIR and FTIR-Microscopy. In: Handbook of Consumer Nanoproducts. Springer, Singapore. https://doi.org/10.1007/978-981-15-6453-6_89-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6453-6_89-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6453-6

  • Online ISBN: 978-981-15-6453-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics