Skip to main content
Log in

Neuroinflammation Biomarkers in the AT(N) Framework Across the Alzheimer’s Disease Continuum

  • Review
  • Published:
The Journal of Prevention of Alzheimer's Disease Aims and scope Submit manuscript

Abstract

In the past years, neuroinflammation has been widely investigated in Alzheimer’s disease (AD). Evidence from animal, in vivo and post-mortem studies has shown that inflammatory changes are a common feature of the disease, apparently happening in response to amyloid-beta and tau accumulation. Progress in imaging and fluid biomarkers now allows for identifying surrogate markers of neuroinflammation in living individuals, which may offer unprecedented opportunities to better understand AD pathogenesis and progression. In this context, inflammatory mediators and glial proteins (mainly derived from microglial cells and astrocytes) seem to be the most promising biomarkers. Here, we discuss the biological basis of neuroinflammation in AD, revise the proposed neuroinflammation biomarkers, describe what we have learned from anti-inflammatory drug trials, and critically discuss the potential addition of these biomarkers in the AT(N) framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Rodríguez JJ, Olabarria M, Chvatal A, Verkhratsky A. Astroglia in dementia and Alzheimer’s disease. Cell Death Differ. Mar 2009;16(3):378–85. doi: https://doi.org/10.1038/cdd.2008.172

    Article  PubMed  Google Scholar 

  2. Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. Apr 2015;14(4):388–405. doi: https://doi.org/10.1016/s1474-4422(15)70016-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jack CR, Jr., Bennett DA, Blennow K, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018/4 2018;14(4):535–562. doi: https://doi.org/10.1016/j.jalz.2018.02.018

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hampel H, Cummings J, Blennow K, Gao P, Jack CR, Vergallo A. Developing the ATX(N) classification for use across the Alzheimer disease continuum. Nat Rev Neurol. Sep 2021;17(9):580–589. doi: https://doi.org/10.1038/s41582-021-00520-w

    Article  PubMed  Google Scholar 

  5. Pascoal TA, Benedet AL, Ashton NJ, et al. Microglial activation and tau propagate jointly across Braak stages. Nat Med. Sep 2021;27(9):1592–1599. doi: https://doi.org/10.1038/s41591-021-01456-w

    Article  CAS  PubMed  Google Scholar 

  6. Lee JW, Lee YK, Yuk DY, et al. Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation. Aug 29 2008;5:37. doi: https://doi.org/10.1186/1742-2094-5-37

    Article  PubMed  PubMed Central  Google Scholar 

  7. Minter MR, Taylor JM, Crack PJ. The contribution of neuroinflammation to amyloid toxicity in Alzheimer’s disease. J Neurochem. Feb 2016;136(3):457–74. doi: https://doi.org/10.1111/jnc.13411

    Article  CAS  PubMed  Google Scholar 

  8. Maphis N, Xu G, Kokiko-Cochran ON, et al. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain. Jun 2015;138 (Pt 6):1738–55. doi: https://doi.org/10.1093/brain/awv081

    Article  PubMed  PubMed Central  Google Scholar 

  9. Meyer PF, Savard M, Poirier J, et al. Bi-directional Association of Cerebrospinal Fluid Immune Markers with Stage of Alzheimer’s Disease Pathogenesis. J Alzheimers Dis. 2018;63(2):577–590. doi: https://doi.org/10.3233/JAD-170887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pereira JB, Janelidze S, Strandberg O, et al. Microglial activation protects against accumulation of tau aggregates in nondemented individuals with underlying Alzheimer’s disease pathology. Nature Aging. 2022/12/01 2022;2(12):1138–1144. doi: https://doi.org/10.1038/s43587-022-00310-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Group NP. Nature Portfolio. Accessed September, 29th, 2022

  12. Rustenhoven J, Kipnis J. Brain borders at the central stage of neuroimmunology. Nature. 2022/12/01 2022;612(7940):417–429. doi: https://doi.org/10.1038/s41586-022-05474-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Louveau A, Harris TH, Kipnis J. Revisiting the Mechanisms of CNS Immune Privilege. Trends Immunol. Oct 2015;36(10):569–577. doi: https://doi.org/10.1016/j.it.2015.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener. Nov 26 2020;9(1):42. doi: https://doi.org/10.1186/s40035-020-00221-2

    Article  PubMed  PubMed Central  Google Scholar 

  15. Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci. Jun 2015;16(6):358–72. doi: https://doi.org/10.1038/nrn3880

    Article  CAS  PubMed  Google Scholar 

  16. Sarlus H, Heneka MT. Microglia in Alzheimer’s disease. J Clin Invest. Sep 01 2017;127(9):3240–3249. doi: https://doi.org/10.1172/JCI90606

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bettcher BM, Tansey MG, Dorothee G, Heneka MT. Peripheral and central immune system crosstalk in Alzheimer disease — a research prospectus. Nat Rev Neurol. Nov 2021;17(11):689–701. doi: https://doi.org/10.1038/s41582-021-00549-x

    Article  PubMed  PubMed Central  Google Scholar 

  18. Paolicelli RC, Sierra A, Stevens B, Tremblay ME, Aguzzi A, Ajami B, Amit I, Audinat E, Bechmann I, Bennett M, Bennett F, Bessis A, Biber K, Bilbo S, Blurton-Jones M, Boddeke E, Brites D, Brône B, Brown GC, Butovsky O, Carson MJ, Castellano B, Colonna M, Cowley SA, Cunningham C, Davalos D, De Jager PL, de Strooper B, Denes A, Eggen BJL, Eyo U, Galea E, Garel S, Ginhoux F, Glass CK, Gokce O, Gomez-Nicola D, González B, Gordon S, Graeber MB, Greenhalgh AD, Gressens P, Greter M, Gutmann DH, Haass C, Heneka MT, Heppner FL, Hong S, Hume DA, Jung S, Kettenmann H, Kipnis J, Koyama R, Lemke G, Lynch M, Majewska A, Malcangio M, Malm T, Mancuso R, Masuda T, Matteoli M, McColl BW, Miron VE, Molofsky AV, Monje M, Mracsko E, Nadjar A, Neher JJ, Neniskyte U, Neumann H, Noda M, Peng B, Peri F, Perry VH, Popovich PG, Pridans C, Priller J, Prinz M, Ragozzino D, Ransohoff RM, Salter MW, Schaefer A, Schafer DP, Schwartz M, Simons M, Smith CJ, Streit WJ, Tay TL, Tsai LH, Verkhratsky A, von Bernhardi R, Wake H, Wittamer V, Wolf SA, Wu LJ, Wyss-Coray T. Microglia states and nomenclature: A field at its crossroads. Neuron. 2022 Nov 2;110(21):3458–3483. doi: https://doi.org/10.1016/j.neuron.2022.10.020. PMID: 36327895; PMCID: PMC9999291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Keren-Shaul H, Spinrad A, Weiner A, et al. A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease. Cell. Jun 15 2017;169(7):1276–1290.e17. doi: https://doi.org/10.1016/j.cell.2017.05.018

    Article  CAS  PubMed  Google Scholar 

  20. Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. Mar 2021;17(3):157–172. doi: https://doi.org/10.1038/s41582-020-00435-y

    Article  PubMed  Google Scholar 

  21. Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimers Dement. Jun 2016;12(6):719–32. doi: https://doi.org/10.1016/j.jalz.2016.02.010

    Article  PubMed  Google Scholar 

  22. Lee HG, Wheeler MA, Quintana FJ. Function and therapeutic value of astrocytes in neurological diseases. Nat Rev Drug Discov. May 2022;21(5):339–358. doi: https://doi.org/10.1038/s41573-022-00390-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. Jan 2010;119(1):7–35. doi: https://doi.org/10.1007/s00401-009-0619-8

    Article  PubMed  Google Scholar 

  24. Hashioka S, Wu Z, Klegeris A. Glia-Driven Neuroinflammation and Systemic Inflammation in Alzheimer’s Disease. Curr Neuropharmacol. 2021;19(7):908–924. doi: https://doi.org/10.2174/1570159X18666201111104509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Azevedo FA, Carvalho LR, Grinberg LT, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. Apr 10 2009;513(5):532–41. doi: https://doi.org/10.1002/cne.21974

    Article  PubMed  Google Scholar 

  26. Escartin C, Galea E, Lakatos A, et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci. Mar 2021;24(3):312–325. doi: https://doi.org/10.1038/s41593-020-00783-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Serrano-Pozo A, Mielke ML, Gomez-Isla T, et al. Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease. Am J Pathol. Sep 2011;179(3):1373–84. doi: https://doi.org/10.1016/j.ajpath.2011.05.047

    Article  PubMed  PubMed Central  Google Scholar 

  28. Galea E, Weinstock LD, Larramona-Arcas R, et al. Multi-transcriptomic analysis points to early organelle dysfunction in human astrocytes in Alzheimer’s disease. Neurobiol Dis. May 2022;166:105655. doi: https://doi.org/10.1016/j.nbd.2022.105655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. Jan 26 2017;541(7638):481–487. doi: https://doi.org/10.1038/nature21029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bellaver B, Rocha AS, Souza DG, et al. Activated peripheral blood mononuclear cell mediators trigger astrocyte reactivity. Brain Behav Immun. Aug 2019;80:879–888. doi: https://doi.org/10.1016/j.bbi.2019.05.041

    Article  CAS  PubMed  Google Scholar 

  31. Acaz-Fonseca E, Ortiz-Rodriguez A, Azcoitia I, Garcia-Segura LM, Arevalo M-A. Notch signaling in astrocytes mediates their morphological response to an inflammatory challenge. Cell Death Discovery. 2019/04/03 2019;5(1):85. doi: https://doi.org/10.1038/s41420-019-0166-6

    Article  PubMed  PubMed Central  Google Scholar 

  32. Heneka MT. Inflammasome activation and innate immunity in Alzheimer’s disease. Brain Pathol. Mar 2017;27(2):220–222. doi: https://doi.org/10.1111/bpa.12483

    Article  PubMed  PubMed Central  Google Scholar 

  33. Uddin MS, Kabir MT, Jalouli M, et al. Neuroinflammatory Signaling in the Pathogenesis of Alzheimer’s Disease. Curr Neuropharmacol. 2022;20(1):126–146. doi: https://doi.org/10.2174/1570159X19666210826130210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. Oct 2018;14(10):576–590. doi: https://doi.org/10.1038/s41574-018-0059-4

    Article  CAS  PubMed  Google Scholar 

  35. Franceschi C, Bonafè M, Valensin S, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. Jun 2000;908:244–54. doi: https://doi.org/10.1111/j.1749-6632.2000.tb06651.x

    CAS  Google Scholar 

  36. Kosyreva AM, Sentyabreva AV, Tsvetkov IS, Makarova OV. Alzheimer’s Disease and Inflammaging. Brain Sci. Sep 13 2022;12(9)doi: https://doi.org/10.3390/brainsci12091237

  37. Schlepckow K, Monroe KM, Kleinberger G, et al. Enhancing protective microglial activities with a dual function TREM2 antibody to the stalk region. EMBO Mol Med. Apr 7 2020;12(4):e11227. doi: https://doi.org/10.15252/emmm.201911227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhong L, Xu Y, Zhuo R, et al. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer’s disease model. Nat Commun. Mar 25 2019;10(1):1365. doi: https://doi.org/10.1038/s41467-019-09118-9

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jain N, Lewis CA, Ulrich JD, Holtzman DM. Chronic TREM2 activation exacerbates Aβ-associated tau seeding and spreading. J Exp Med. Jan 2 2023;220(1)doi: https://doi.org/10.1084/jem.20220654

  40. Rauchmann BS, Brendel M, Franzmeier N, et al. Microglial Activation and Connectivity in Alzheimer Disease and Aging. Ann Neurol. Nov 2022;92(5):768–781. doi: https://doi.org/10.1002/ana.26465

    Article  CAS  PubMed  Google Scholar 

  41. Nordengen K, Kirsebom BE, Henjum K, et al. Glial activation and inflammation along the Alzheimer’s disease continuum. J Neuroinflammation. Feb 21 2019;16(1):46. doi: https://doi.org/10.1186/s12974-019-1399-2

    Article  PubMed  PubMed Central  Google Scholar 

  42. Winfree RL, Dumitrescu L, Blennow K, et al. Biological correlates of elevated soluble TREM2 in cerebrospinal fluid. Neurobiol Aging. Oct 2022;118:88–98. doi: https://doi.org/10.1016/j.neurobiolaging.2022.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen YH, Lin RR, Huang HF, Xue YY, Tao QQ. Microglial Activation, Tau Pathology, and Neurodegeneration Biomarkers Predict Longitudinal Cognitive Decline in Alzheimer’s Disease Continuum. Front Aging Neurosci. 2022;14:848180. doi: https://doi.org/10.3389/fnagi.2022.848180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li TR, Lyu DY, Liu FQ. Cerebrospinal Fluid sTREM2 in Alzheimer’s Disease Is Associated with Both Amyloid and Tau Pathologies but not with Cognitive Status. J Alzheimers Dis. Oct 6 2022;doi: https://doi.org/10.3233/jad-220598

  45. Diaz-Lucena D, Kruse N, Thüne K, et al. TREM2 expression in the brain and biological fluids in prion diseases. Acta Neuropathol. Jun 2021;141(6):841–859. doi: https://doi.org/10.1007/s00401-021-02296-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Knapskog AB, Henjum K, Idland AV, et al. Cerebrospinal fluid sTREM2 in Alzheimer’s disease: comparisons between clinical presentation and AT classification. Sci Rep. Sep 28 2020;10(1):15886. doi: https://doi.org/10.1038/s41598-020-72878-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Morenas-Rodríguez E, Alcolea D, Suárez-Calvet M, et al. Different pattern of CSF glial markers between dementia with Lewy bodies and Alzheimer’s disease. Sci Rep. May 24 2019;9(1):7803. doi: https://doi.org/10.1038/s41598-019-44173-8

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gispert JD, Suárez-Calvet M, Monté GC, et al. Cerebrospinal fluid sTREM2 levels are associated with gray matter volume increases and reduced diffusivity in early Alzheimer’s disease. Alzheimers Dement. Dec 2016;12(12):1259–1272. doi: https://doi.org/10.1016/j.jalz.2016.06.005

    Article  PubMed  Google Scholar 

  49. Ma LZ, Tan L, Bi YL, et al. Dynamic changes of CSF sTREM2 in preclinical Alzheimer’s disease: the CABLE study. Mol Neurodegener. Apr 10 2020;15(1):25. doi: https://doi.org/10.1186/s13024-020-00374-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Suárez-Calvet M, Morenas-Rodríguez E, Kleinberger G, et al. Early increase of CSF sTREM2 in Alzheimer’s disease is associated with tau related-neurodegeneration but not with amyloid-β pathology. Mol Neurodegener. Jan 10 2019;14(1):1. doi: https://doi.org/10.1186/s13024-018-0301-5

    Article  PubMed  PubMed Central  Google Scholar 

  51. Leng F, Zhan Z, Sun Y, et al. Cerebrospinal Fluid sTREM2 Has Paradoxical Association with Brain Structural Damage Rate in Early- and Late-Stage Alzheimer’s Disease. J Alzheimers Dis. 2022;88(1):117–126. doi: https://doi.org/10.3233/jad-220102

    Article  CAS  PubMed  Google Scholar 

  52. Edwin TH, Henjum K, Nilsson LNG, et al. A high cerebrospinal fluid soluble TREM2 level is associated with slow clinical progression of Alzheimer’s disease. Alzheimers Dement (Amst). 2020;12(1):e12128. doi: https://doi.org/10.1002/dad2.12128

    PubMed  Google Scholar 

  53. Morenas-Rodríguez E, Li Y, Nuscher B, et al. Soluble TREM2 in CSF and its association with other biomarkers and cognition in autosomal-dominant Alzheimer’s disease: a longitudinal observational study. Lancet Neurol. Apr 2022;21(4):329–341. doi: https://doi.org/10.1016/s1474-4422(22)00027-8

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pillai JA, Khrestian M, Bena J, Leverenz JB, Bekris LM. Temporal Ordering of Inflammatory Analytes sTNFR2 and sTREM2 in Relation to Alzheimer’s Disease Biomarkers and Clinical Outcomes. Front Aging Neurosci. 2021;13:676744. doi: https://doi.org/10.3389/fnagi.2021.676744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hu WT, Ozturk T, Kollhoff A, et al. Higher CSF sTNFR1-related proteins associate with better prognosis in very early Alzheimer’s disease. Nature Communications. 2021/06/28 2021;12(1):4001. doi: https://doi.org/10.1038/s41467-021-24220-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ewers M, Biechele G, Suárez-Calvet M, et al. Higher CSF sTREM2 and microglia activation are associated with slower rates of beta-amyloid accumulation. EMBO Mol Med. Sep 7 2020;12(9):e12308. doi: https://doi.org/10.15252/emmm.202012308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rosengren LE, Wikkelsø C, Hagberg L. A sensitive ELISA for glial fibrillary acidic protein: application in CSF of adults. J Neurosci Methods. Mar 1994;51(2):197–204. doi: https://doi.org/10.1016/0165-0270(94)90011-6

    Article  CAS  PubMed  Google Scholar 

  58. Wallin A, Blennow K, Rosengren LE. Glial fibrillary acidic protein in the cerebrospinal fluid of patients with dementia. Dementia. Sep–Oct 1996;7(5):267–72. doi: https://doi.org/10.1159/000106891

    CAS  PubMed  Google Scholar 

  59. Fukuyama R, Izumoto T, Fushiki S. The cerebrospinal fluid level of glial fibrillary acidic protein is increased in cerebrospinal fluid from Alzheimer’s disease patients and correlates with severity of dementia. Eur Neurol. 2001;46(1):35–8. doi: https://doi.org/10.1159/000050753

    Article  CAS  PubMed  Google Scholar 

  60. Benedet AL, Milà-Alomà M, Vrillon A, et al. Differences Between Plasma and Cerebrospinal Fluid Glial Fibrillary Acidic Protein Levels Across the Alzheimer Disease Continuum. JAMA Neurol. Dec 1 2021;78(12):1471–1483. doi: https://doi.org/10.1001/jamaneurol.2021.3671

    Article  PubMed  Google Scholar 

  61. Pereira JB, Janelidze S, Smith R, et al. Plasma GFAP is an early marker of amyloid-β but not tau pathology in Alzheimer’s disease. Brain. Dec 16 2021;144(11):3505–3516. doi: https://doi.org/10.1093/brain/awab223

    Article  PubMed  PubMed Central  Google Scholar 

  62. Salvadó G, Milà-Alomà M, Shekari M, et al. Cerebral amyloid-β load is associated with neurodegeneration and gliosis: Mediation by p-tau and interactions with risk factors early in the Alzheimer’s continuum. Alzheimers Dement. May 2021;17(5):788–800. doi: https://doi.org/10.1002/alz.12245

    Article  PubMed  PubMed Central  Google Scholar 

  63. Milà-Alomà M, Salvadó G, Gispert JD, et al. Amyloid beta, tau, synaptic, neurodegeneration, and glial biomarkers in the preclinical stage of the Alzheimer’s continuum. Alzheimers Dement. Oct 2020;16(10):1358–1371. doi: https://doi.org/10.1002/alz.12131

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lauridsen C, Sando SB, Møller I, et al. Cerebrospinal Fluid Aβ43 Is Reduced in Early-Onset Compared to Late-Onset Alzheimer’s Disease, But Has Similar Diagnostic Accuracy to Aβ42. Front Aging Neurosci. 2017;9:210. doi: https://doi.org/10.3389/fnagi.2017.00210

    Article  PubMed  PubMed Central  Google Scholar 

  65. Oeckl P, Halbgebauer S, Anderl-Straub S, et al. Glial Fibrillary Acidic Protein in Serum is Increased in Alzheimer’s Disease and Correlates with Cognitive Impairment. J Alzheimers Dis. 2019;67(2):481–488. doi: https://doi.org/10.3233/jad-180325

    Article  CAS  PubMed  Google Scholar 

  66. Ishiki A, Kamada M, Kawamura Y, et al. Glial fibrillar acidic protein in the cerebrospinal fluid of Alzheimer’s disease, dementia with Lewy bodies, and frontotemporal lobar degeneration. J Neurochem. Jan 2016;136(2):258–61. doi: https://doi.org/10.1111/jnc.13399

    Article  CAS  PubMed  Google Scholar 

  67. van Eijk JJ, van Everbroeck B, Abdo WF, Kremer BP, Verbeek MM. CSF neurofilament proteins levels are elevated in sporadic Creutzfeldt-Jakob disease. J Alzheimers Dis. 2010;21(2):569–76. doi: https://doi.org/10.3233/jad-2010-090649

    Article  CAS  PubMed  Google Scholar 

  68. Simrén J, Weninger H, Brum WS, et al. Differences between blood and cerebrospinal fluid glial fibrillary Acidic protein levels: The effect of sample stability. Alzheimers Dement. Oct 2022;18(10):1988–1992. doi: https://doi.org/10.1002/alz.12806

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chatterjee P, Pedrini S, Stoops E, et al. Plasma glial fibrillary acidic protein is elevated in cognitively normal older adults at risk of Alzheimer’s disease. Transl Psychiatry. Jan 11 2021;11(1):27. doi: https://doi.org/10.1038/s41398-020-01137-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Prins S, de Kam ML, Teunissen CE, Groeneveld GJ. Inflammatory plasma biomarkers in subjects with preclinical Alzheimer’s disease. Alzheimers Res Ther. Aug 3 2022;14(1):106. doi: https://doi.org/10.1186/s13195-022-01051-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. O’Connor A, Abel E, Benedet AL, et al. Plasma GFAP in presymptomatic and symptomatic familial Alzheimer’s disease: a longitudinal cohort study. J Neurol Neurosurg Psychiatry. Aug 10 2022;doi: https://doi.org/10.1136/jnnp-2022-329663

  72. Shir D, Graff-Radford J, Hofrenning EI, et al. Association of plasma glial fibrillary acidic protein (GFAP) with neuroimaging of Alzheimer’s disease and vascular pathology. Alzheimers Dement (Amst). 2022;14(1):e12291. doi: https://doi.org/10.1002/dad2.12291

    PubMed  Google Scholar 

  73. Rajan KB, Aggarwal NT, McAninch EA, et al. Remote Blood Biomarkers of Longitudinal Cognitive Outcomes in a Population Study. Ann Neurol. Dec 2020;88(6):1065–1076. doi: https://doi.org/10.1002/ana.25874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Asken BM, VandeVrede L, Rojas JC, et al. Lower White Matter Volume and Worse Executive Functioning Reflected in Higher Levels of Plasma GFAP among Older Adults with and Without Cognitive Impairment. J Int Neuropsychol Soc. Jul 2022;28(6):588–599. doi: https://doi.org/10.1017/s1355617721000813

    Article  PubMed  Google Scholar 

  75. Cicognola C, Janelidze S, Hertze J, et al. Plasma glial fibrillary acidic protein detects Alzheimer pathology and predicts future conversion to Alzheimer dementia in patients with mild cognitive impairment. Alzheimers Res Ther. Mar 27 2021;13(1):68. doi: https://doi.org/10.1186/s13195-021-00804-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ebenau JL, Pelkmans W, Verberk IMW, et al. Association of CSF, Plasma, and Imaging Markers of Neurodegeneration With Clinical Progression in People With Subjective Cognitive Decline. Neurology. Mar 29 2022;98(13):e1315–e1326. doi: https://doi.org/10.1212/WNL.0000000000200035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Stocker H, Beyer L, Perna L, et al. Association of plasma biomarkers, p-tau181, glial fibrillary acidic protein, and neurofilament light, with intermediate and long-term clinical Alzheimer’s disease risk: Results from a prospective cohort followed over 17 years. Alzheimers Dement. Mar 2 2022;doi: https://doi.org/10.1002/alz.12614

  78. Verberk IMW, Laarhuis MB, van den Bosch KA, et al. Serum markers glial fibrillary acidic protein and neurofilament light for prognosis and monitoring in cognitively normal older people: a prospective memory clinic-based cohort study. Lancet Healthy Longev. Feb 2021;2(2):e87–e95. doi: https://doi.org/10.1016/s2666-7568(20)30061-1

    Article  PubMed  Google Scholar 

  79. Llorens F, Thüne K, Tahir W, et al. YKL-40 in the brain and cerebrospinal fluid of neurodegenerative dementias. Mol Neurodegener. Nov 10 2017;12(1):83. doi: https://doi.org/10.1186/s13024-017-0226-4

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bellaver B, Ferrari-Souza JP, Uglione da Ros L, et al. Astrocyte Biomarkers in Alzheimer Disease: A Systematic Review and Meta-analysis. Neurology. May 5 2021;doi: https://doi.org/10.1212/wnl.0000000000012109

  81. De Kort AM, Kuiperij HB, Alcolea D, et al. Cerebrospinal fluid levels of the neurotrophic factor neuroleukin are increased in early Alzheimer’s disease, but not in cerebral amyloid angiopathy. Alzheimers Res Ther. Sep 24 2021;13(1):160. doi: https://doi.org/10.1186/s13195-021-00899-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kester MI, Teunissen CE, Sutphen C, et al. Cerebrospinal fluid VILIP-1 and YKL-40, candidate biomarkers to diagnose, predict and monitor Alzheimer’s disease in a memory clinic cohort. Alzheimers Res Ther. Sep 17 2015;7(1):59. doi: https://doi.org/10.1186/s13195-015-0142-1

    Article  PubMed  PubMed Central  Google Scholar 

  83. Palmqvist S, Insel PS, Stomrud E, et al. Cerebrospinal fluid and plasma biomarker trajectories with increasing amyloid deposition in Alzheimer’s disease. EMBO Mol Med. Dec 2019;11(12):e11170. doi: https://doi.org/10.15252/emmm.201911170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schindler SE, Li Y, Todd KW, et al. Emerging cerebrospinal fluid biomarkers in autosomal dominant Alzheimer’s disease. Alzheimers Dement. May 2019;15(5):655–665. doi: https://doi.org/10.1016/j.jalz.2018.12.019

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sutphen CL, Jasielec MS, Shah AR, et al. Longitudinal Cerebrospinal Fluid Biomarker Changes in Preclinical Alzheimer Disease During Middle Age. JAMA Neurology. 2015;72(9):1029–1042. doi: https://doi.org/10.1001/jamaneurol.2015.1285

    Article  PubMed  PubMed Central  Google Scholar 

  86. Henson RL, Doran E, Christian BT, et al. Cerebrospinal fluid biomarkers of Alzheimer’s disease in a cohort of adults with Down syndrome. Alzheimers Dement (Amst). 2020;12(1):e12057. doi: https://doi.org/10.1002/dad2.12057

    PubMed  Google Scholar 

  87. Woollacott IOC, Nicholas JM, Heller C, et al. Cerebrospinal Fluid YKL-40 and Chitotriosidase Levels in Frontotemporal Dementia Vary by Clinical, Genetic and Pathological Subtype. Dement Geriatr Cogn Disord. 2020;49(1):56–76. doi: https://doi.org/10.1159/000506282

    Article  CAS  PubMed  Google Scholar 

  88. Ferrari-Souza JP, Ferreira PCL, Bellaver B, et al. Astrocyte biomarker signatures of amyloid-β and tau pathologies in Alzheimer’s disease. Mol Psychiatry. Aug 10 2022;doi: https://doi.org/10.1038/s41380-022-01716-2

  89. Salvadó G, Milà-Alomà M, Shekari M, et al. Reactive astrogliosis is associated with higher cerebral glucose consumption in the early Alzheimer’s continuum. European Journal of Nuclear Medicine and Molecular Imaging. 2022/11/01 2022;49(13):4567–4579. doi: https://doi.org/10.1007/s00259-022-05897-4

    Article  PubMed  PubMed Central  Google Scholar 

  90. Van Hulle C, Jonaitis EM, Betthauser TJ, et al. An examination of a novel multipanel of CSF biomarkers in the Alzheimer’s disease clinical and pathological continuum. Alzheimers Dement. Mar 2021;17(3):431–445. doi: https://doi.org/10.1002/alz.12204

    Article  CAS  PubMed  Google Scholar 

  91. Salvadó G, Shekari M, Falcon C, et al. Brain alterations in the early Alzheimer’s continuum with amyloid-β, tau, glial and neurodegeneration CSF markers. Brain Commun. 2022;4(3):fcac134. doi: https://doi.org/10.1093/braincomms/fcac134

    Article  PubMed  PubMed Central  Google Scholar 

  92. Morar U, Izquierdo W, Martin H, et al. A study of the longitudinal changes in multiple cerebrospinal fluid and volumetric magnetic resonance imaging biomarkers on converter and non-converter Alzheimer’s disease subjects with consideration for their amyloid beta status. Alzheimers Dement (Amst). 2022;14(1):e12258. doi: https://doi.org/10.1002/dad2.12258

    PubMed  Google Scholar 

  93. Alcolea D, Martinez-Lage P, Sanchez-Juan P, et al. Amyloid precursor protein metabolism and inflammation markers in preclinical Alzheimer disease. Neurology. Aug 18 2015;85(7):626–33. doi: https://doi.org/10.1212/WNL.0000000000001859

    Article  CAS  PubMed  Google Scholar 

  94. Blanco-Palmero VA, Rubio-Fernández M, Antequera D, et al. Increased YKL-40 but Not C-Reactive Protein Levels in Patients with Alzheimer’s Disease. Biomedicines. Aug 27 2021;9(9)doi: https://doi.org/10.3390/biomedicines9091094

  95. Craig-Schapiro R, Perrin RJ, Roe CM, et al. YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol Psychiatry. Nov 15 2010;68(10):903–12. doi: https://doi.org/10.1016/j.biopsych.2010.08.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Michetti F, D’Ambrosi N, Toesca A, et al. The S100B story: from biomarker to active factor in neural injury. J Neurochem. Jan 2019;148(2):168–187. doi: https://doi.org/10.1111/jnc.14574

    Article  CAS  PubMed  Google Scholar 

  97. Piazza O, Leggiero E, De Benedictis G, et al. S100B induces the release of pro-inflammatory cytokines in alveolar type I-like cells. Int J Immunopathol Pharmacol. Apr-Jun 2013;26(2):383–91. doi: https://doi.org/10.1177/039463201302600211

    Article  CAS  PubMed  Google Scholar 

  98. Schulz I, Kruse N, Gera RG, et al. Systematic Assessment of 10 Biomarker Candidates Focusing on α-Synuclein-Related Disorders. Mov Disord. Dec 2021;36(12):2874–2887. doi: https://doi.org/10.1002/mds.28738

    Article  CAS  PubMed  Google Scholar 

  99. Green AJ, Harvey RJ, Thompson EJ, Rossor MN. Increased S100beta in the cerebrospinal fluid of patients with frontotemporal dementia. Neurosci Lett. Oct 10 1997;235(1–2):5–8. doi: https://doi.org/10.1016/s0304-3940(97)00701-5

    Article  CAS  PubMed  Google Scholar 

  100. Peskind ER, Griffin WS, Akama KT, Raskind MA, Van Eldik LJ. Cerebrospinal fluid S100B is elevated in the earlier stages of Alzheimer’s disease. Neurochem Int. Nov-Dec 2001;39(5–6):409–13. doi: https://doi.org/10.1016/s0197-0186(01)00048-1

    Article  CAS  PubMed  Google Scholar 

  101. Maetzler W, Berg D, Synofzik M, et al. Autoantibodies against amyloid and glial-derived antigens are increased in serum and cerebrospinal fluid of Lewy body-associated dementias. J Alzheimers Dis. 2011;26(1):171–9. doi: https://doi.org/10.3233/jad-2011-110221

    Article  CAS  PubMed  Google Scholar 

  102. Andreasen N, Gottfries J, Vanmechelen E, et al. Evaluation of CSF biomarkers for axonal and neuronal degeneration, gliosis, and beta-amyloid metabolism in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. Oct 2001;71(4):557–8. doi: https://doi.org/10.1136/jnnp.71.4.557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Teitsdottir UD, Jonsdottir MK, Lund SH, Darreh-Shori T, Snaedal J, Petersen PH. Association of glial and neuronal degeneration markers with Alzheimer’s disease cerebrospinal fluid profile and cognitive functions. Alzheimers Res Ther. Aug 4 2020;12(1):92. doi: https://doi.org/10.1186/s13195-020-00657-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Milà-Alomà M, Shekari M, Salvadó G, et al. Cognitively unimpaired individuals with a low burden of Aβ pathology have a distinct CSF biomarker profile. Alzheimers Res Ther. Jul 27 2021;13(1):134. doi: https://doi.org/10.1186/s13195-021-00863-y

    Article  PubMed  PubMed Central  Google Scholar 

  105. Zheng C, Zhou X-W, Wang J-Z. The dual roles of cytokines in Alzheimer’s disease: update on interleukins, TNF-α, TGF-β and IFN-γ. Translational Neurodegeneration. 2016/04/05 2016;5(1):7. doi: https://doi.org/10.1186/s40035-016-0054-4

    Article  PubMed  PubMed Central  Google Scholar 

  106. Brosseron F, Krauthausen M, Kummer M, Heneka MT. Body fluid cytokine levels in mild cognitive impairment and Alzheimer’s disease: a comparative overview. Mol Neurobiol. Oct 2014;50(2):534–44. doi: https://doi.org/10.1007/s12035-014-8657-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Beaino W, Janssen B, Vugts DJ, de Vries HE, Windhorst AD. Towards PET imaging of the dynamic phenotypes of microglia. Clin Exp Immunol. Dec 2021;206(3):282–300. doi: https://doi.org/10.1111/cei.13649

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kreisl WC, Kim MJ, Coughlin JM, Henter ID, Owen DR, Innis RB. PET imaging of neuroinflammation in neurological disorders. Lancet Neurol. Nov 2020;19(11):940–950. doi: https://doi.org/10.1016/S1474-4422(20)30346-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang L, Hu K, Shao T, et al. Recent developments on PET radiotracers for TSPO and their applications in neuroimaging. Acta Pharm Sin B. Feb 2021;11(2):373–393. doi: https://doi.org/10.1016/j.apsb.2020.08.006

    Article  CAS  PubMed  Google Scholar 

  110. Femminella GD, Ninan S, Atkinson R, Fan Z, Brooks DJ, Edison P. Does Microglial Activation Influence Hippocampal Volume and Neuronal Function in Alzheimer’s Disease and Parkinson’s Disease Dementia? J Alzheimers Dis. 2016;51(4):1275–89. doi: https://doi.org/10.3233/JAD-150827

    Article  CAS  PubMed  Google Scholar 

  111. Fan Z, Okello AA, Brooks DJ, Edison P. Longitudinal influence of microglial activation and amyloid on neuronal function in Alzheimer’s disease. Brain. Dec 2015;138 (Pt 12):3685–98. doi: https://doi.org/10.1093/brain/awv288

    Article  PubMed  Google Scholar 

  112. Yokokura M, Terada T, Bunai T, et al. Depiction of microglial activation in aging and dementia: Positron emission tomography with [J Cereb Blood Flow Metab. Mar 2017;37(3):877–889. doi: https://doi.org/10.1177/0271678X16646788

  113. Yasuno F, Kosaka J, Ota M, et al. Increased binding of peripheral benzodiazepine receptor in mild cognitive impairment-dementia converters measured by positron emission tomography with [11C]DAA1106. Psychiatry Res. Jul 30 2012;203(1):67–74. doi: https://doi.org/10.1016/j.pscychresns.2011.08.013

    Article  CAS  PubMed  Google Scholar 

  114. Kreisl WC, Lyoo CH, Liow JS, et al. (11)C-PBR28 binding to translocator protein increases with progression of Alzheimer’s disease. Neurobiol Aging. Aug 2016;44:53–61. doi: https://doi.org/10.1016/j.neurobiolaging.2016.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dani M, Wood M, Mizoguchi R, et al. Microglial activation correlates in vivo with both tau and amyloid in Alzheimer’s disease. Brain. Sep 01 2018;141(9):2740–2754. doi: https://doi.org/10.1093/brain/awy188

    PubMed  Google Scholar 

  116. Mizrahi R, Rusjan PM, Kennedy J, et al. Translocator protein (18 kDa) polymorphism (rs6971) explains in-vivo brain binding affinity of the PET radioligand [(18)F]-FEPPA. J Cereb Blood Flow Metab. Jun 2012;32(6):968–72. doi: https://doi.org/10.1038/jcbfm.2012.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Xiang X, Wind K, Wiedemann T, et al. Microglial activation states drive glucose uptake and FDG-PET alterations in neurodegenerative diseases. Sci Transl Med. Oct 13 2021;13(615):eabe5640. doi: https://doi.org/10.1126/scitranslmed.abe5640

    Article  CAS  PubMed  Google Scholar 

  118. Ikawa M, Lohith TG, Shrestha S, et al. 11C-ER176, a Radioligand for 18-kDa Translocator Protein, Has Adequate Sensitivity to Robustly Image All Three Affinity Genotypes in Human Brain. J Nucl Med. Feb 2017;58(2):320–325. doi: https://doi.org/10.2967/jnumed.116.178996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fujita M, Kobayashi M, Ikawa M, et al. Comparison of four. EJNMMI Res. Oct 16 2017;7(1):84. doi: https://doi.org/10.1186/s13550-017-0334-8

    Article  PubMed  PubMed Central  Google Scholar 

  120. Delage C, Vignal N, Guerin C, et al. From positron emission tomography to cell analysis of the 18-kDa Translocator Protein in mild traumatic brain injury. Sci Rep. Dec 14 2021;11(1):24009. doi: https://doi.org/10.1038/s41598-021-03416-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nutma E, Fancy N, Weinert M, et al. Translocator protein is a marker of activated microglia in rodent models but not human neurodegenerative diseases. bioRxiv. 2022:2022.05.11.491453. doi: https://doi.org/10.1101/2022.05.11.491453

  122. Hagan N, Kane JL, Grover D, et al. CSF1R signaling is a regulator of pathogenesis in progressive MS. Cell Death Dis. Oct 23 2020;11(10):904. doi: https://doi.org/10.1038/s41419-020-03084-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Horti AG, Naik R, Foss CA, et al. PET imaging of microglia by targeting macrophage colony-stimulating factor 1 receptor (CSF1R). Proc Natl Acad Sci U S A. Jan 29 2019;116(5):1686–1691. doi: https://doi.org/10.1073/pnas.1812155116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Akiyama H, Nishimura T, Kondo H, Ikeda K, Hayashi Y, McGeer PL. Expression of the receptor for macrophage colony stimulating factor by brain microglia and its upregulation in brains of patients with Alzheimer’s disease and amyotrophic lateral sclerosis. Brain Res. Mar 07 1994;639(1):171–4. doi: https://doi.org/10.1016/0006-8993(94)91779-5

    Article  CAS  PubMed  Google Scholar 

  125. Walker DG, Tang TM, Lue LF. Studies on Colony Stimulating Factor Receptor-1 and Ligands Colony Stimulating Factor-1 and Interleukin-34 in Alzheimer’s Disease Brains and Human Microglia. Front Aging Neurosci. 2017;9:244. doi: https://doi.org/10.3389/fnagi.2017.00244

    Article  PubMed  PubMed Central  Google Scholar 

  126. Ruiz de Martín Esteban S, Benito-Cuesta I, Terradillos I, et al. Cannabinoid CB2 Receptors Modulate Microglia Function and Amyloid Dynamics in a Mouse Model of Alzheimer’s Disease. Front Pharmacol. 2022;13:841766. doi: https://doi.org/10.3389/fphar.2022.841766

    Article  PubMed  PubMed Central  Google Scholar 

  127. Gómez Morillas A, Besson VC, Lerouet D. Microglia and Neuroinflammation: What Place for P2RY12? Int J Mol Sci. Feb 06 2021;22(4)doi: https://doi.org/10.3390/ijms22041636

  128. Andrejew R, Oliveira-Giacomelli Á, Ribeiro DE, et al. The P2X7 Receptor: Central Hub of Brain Diseases. Front Mol Neurosci. 2020;13:124. doi: https://doi.org/10.3389/fnmol.2020.00124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Janssen B, Vugts DJ, Wilkinson SM, et al. Identification of the allosteric P2X. Sci Rep. Apr 26 2018;8(1):6580. doi: https://doi.org/10.1038/s41598-018-24814-0

    Article  PubMed  PubMed Central  Google Scholar 

  130. Lucot KL, Stevens MY, Bonham TA, et al. Tracking Innate Immune Activation in a Mouse Model of Parkinson’s Disease Using TREM1 and TSPO PET Tracers. J Nucl Med. Oct 2022;63(10):1570–1578. doi: https://doi.org/10.2967/jnumed.121.263039

    Article  CAS  PubMed  Google Scholar 

  131. Levitt P, Pintar JE, Breakefield XO. Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons. Proc Natl Acad Sci U S A. Oct 1982;79(20):6385–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Westlund KN, Denney RM, Rose RM, Abell CW. Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem. Neuroscience. May 1988;25(2):439–56. doi: https://doi.org/10.1016/0306-4522(88)90250-3

    Article  CAS  PubMed  Google Scholar 

  133. Ekblom J, Jossan SS, Bergstrom M, Oreland L, Walum E, Aquilonius SM. Monoamine oxidase-B in astrocytes. Glia. Jun 1993;8(2):122–32. doi: https://doi.org/10.1002/glia.440080208

    Article  CAS  PubMed  Google Scholar 

  134. Ekblom J, Jossan SS, Oreland L, Walum E, Aquilonius SM. Reactive gliosis and monoamine oxidase B. J Neural Transm Suppl. 1994;41:253–8. doi: https://doi.org/10.1007/978-3-7091-9324-2_33

    CAS  PubMed  Google Scholar 

  135. Olsen M, Aguilar X, Sehlin D, et al. Astroglial Responses to Amyloid-Beta Progression in a Mouse Model of Alzheimer’s Disease. Mol Imaging Biol. Aug 2018;20(4):605–614. doi: https://doi.org/10.1007/s11307-017-1153-z

    Article  CAS  PubMed  Google Scholar 

  136. Saura J, Luque JM, Cesura AM, et al. Increased monoamine oxidase B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience. Sep 1994;62(1):15–30. doi: https://doi.org/10.1016/0306-4522(94)90311-5

    Article  CAS  PubMed  Google Scholar 

  137. Fowler JS, Logan J, Shumay E, Alia-Klein N, Wang GJ, Volkow ND. Monoamine oxidase: radiotracer chemistry and human studies. J Labelled Comp Radiopharm. Mar 2015;58(3):51–64. doi: https://doi.org/10.1002/jlcr.3247

    Article  CAS  PubMed  Google Scholar 

  138. Jossan SS, Gillberg PG, Gottfries CG, Karlsson I, Oreland L. Monoamine oxidase B in brains from patients with Alzheimer’s disease: a biochemical and autoradiographical study. Neuroscience. 1991;45(1):1–12. doi: https://doi.org/10.1016/0306-4522(91)90098-9

    Article  CAS  PubMed  Google Scholar 

  139. Gulyas B, Pavlova E, Kasa P, et al. Activated MAO-B in the brain of Alzheimer patients, demonstrated by [11C]-L-deprenyl using whole hemisphere autoradiography. Neurochem Int. Jan 2011;58(1):60–8. doi: https://doi.org/10.1016/j.neuint.2010.10.013

    Article  CAS  PubMed  Google Scholar 

  140. Santillo AF, Gambini JP, Lannfelt L, et al. In vivo imaging of astrocytosis in Alzheimer’s disease: an (1)(1)C-L-deuteriodeprenyl and PIB PET study. Eur J Nucl Med Mol Imaging. Dec 2011;38(12):2202–8. doi: https://doi.org/10.1007/s00259-011-1895-9

    Article  PubMed  Google Scholar 

  141. Carter SF, Scholl M, Almkvist O, et al. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J Nucl Med. Jan 2012;53(1):37–46. doi: https://doi.org/10.2967/jnumed.110.087031

    Article  CAS  PubMed  Google Scholar 

  142. Scholl M, Carter SF, Westman E, et al. Early astrocytosis in autosomal dominant Alzheimer’s disease measured in vivo by multi-tracer positron emission tomography. Sci Rep. Nov 10 2015;5:16404. doi: https://doi.org/10.1038/srep16404

    Article  PubMed  PubMed Central  Google Scholar 

  143. Rodriguez-Vieitez E, Saint-Aubert L, Carter SF, et al. Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer’s disease. Brain. Mar 2016;139 (Pt 3):922–36. doi: https://doi.org/10.1093/brain/awv404

    Article  PubMed  PubMed Central  Google Scholar 

  144. Stanley K, Walker Z. Do patients with young onset Alzheimer’s disease deteriorate faster than those with late onset Alzheimer’s disease? A review of the literature. Int Psychogeriatr. Dec 2014;26(12):1945–53. doi: https://doi.org/10.1017/S1041610214001173

    Article  PubMed  Google Scholar 

  145. Plenevaux A, Fowler JS, Dewey SL, Wolf AP, Guillaume M. The synthesis of no-carrier-added DL-4-[18F]fluorodeprenyl via the nucleophilic aromatic substitution reaction. Int J Rad Appl Instrum A. 1991;42(2):121–7. doi: https://doi.org/10.1016/0883-2889(91)90060-e

    Article  CAS  PubMed  Google Scholar 

  146. Nag S, Lehmann L, Kettschau G, et al. Development of a novel fluorine-18 labeled deuterated fluororasagiline ([(18)F]fluororasagiline-D2) radioligand for PET studies of monoamino oxidase B (MAO-B). Bioorg Med Chem. Nov 1 2013;21(21):6634–41. doi: https://doi.org/10.1016/j.bmc.2013.08.019

    Article  CAS  PubMed  Google Scholar 

  147. Nag S, Fazio P, Lehmann L, et al. In Vivo and In Vitro Characterization of a Novel MAO-B Inhibitor Radioligand, 18F-Labeled Deuterated Fluorodeprenyl. J Nucl Med. Feb 2016;57(2):315–20. doi: https://doi.org/10.2967/jnumed.115.161083

    Article  CAS  PubMed  Google Scholar 

  148. Bramoullé Y, Puech F, Saba W, et al. Radiosynthesis of (S)-5-methoxymethyl-3-[6-(4,4,4-trifluorobutoxy)benzo[d]isoxazol-3-yl] oxazolidin-2-[11C]one ([11C] SL25.1188), a novel radioligand for imaging monoamine oxidase-B with PET. Journal of Labelled Compounds and Radiopharmaceuticals. 2008;51(3):153–158. doi: https://doi.org/10.1002/jlcr.1492

    Article  Google Scholar 

  149. Hicks JW, Sadovski O, Parkes J, et al. Radiosynthesis and ex vivo evaluation of [(18)F]-(S)-3-(6-(3-fluoropropoxy)benzo[d]isoxazol-3-yl)-5-(methoxymethyl) oxazolidin-2-one for imaging MAO-B with PET. Bioorg Med Chem Lett. Jan 15 2015;25(2):288–91. doi: https://doi.org/10.1016/j.bmcl.2014.11.048

    Article  CAS  PubMed  Google Scholar 

  150. Dahl K, Bernard-Gauthier V, Nag S, et al. Synthesis and preclinical evaluation of [(18)F]FSL25.1188, a reversible PET radioligand for monoamine oxidase-B. Bioorg Med Chem Lett. Jul 1 2019;29(13):1624–1627. doi: https://doi.org/10.1016/j.bmcl.2019.04.040

    Article  CAS  PubMed  Google Scholar 

  151. Harada R, Hayakawa Y, Ezura M, et al. (18)F-SMBT-1: A Selective and Reversible PET Tracer for Monoamine Oxidase-B Imaging. J Nucl Med. Feb 2021;62(2):253–258. doi: https://doi.org/10.2967/jnumed.120.244400

    Article  CAS  PubMed  Google Scholar 

  152. Ng KP, Pascoal TA, Mathotaarachchi S, et al. Monoamine oxidase B inhibitor, selegiline, reduces (18)F-THK5351 uptake in the human brain. Alzheimers Res Ther. Mar 31 2017;9(1):25. doi: https://doi.org/10.1186/s13195-017-0253-y

    Article  PubMed  PubMed Central  Google Scholar 

  153. Villemagne VL, Harada R, Dore V, et al. First-in-Humans Evaluation of (18)F-SMBT-1, a Novel (18)F-Labeled Monoamine Oxidase-B PET Tracer for Imaging Reactive Astrogliosis. J Nucl Med. Oct 2022;63(10):1551–1559. doi: https://doi.org/10.2967/jnumed.121.263254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Villemagne VL, Harada R, Doré V, et al. Assessing Reactive Astrogliosis with. J Nucl Med. Oct 2022;63(10):1560–1569. doi: https://doi.org/10.2967/jnumed.121.263255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Regunathan S, Feinstein DL, Reis DJ. Expression of non-adrenergic imidazoline sites in rat cerebral cortical astrocytes. J Neurosci Res. Apr 15 1993;34(6):681–8. doi: https://doi.org/10.1002/jnr.490340611

    Article  CAS  PubMed  Google Scholar 

  156. Kimura A, Tyacke RJ, Minchin MC, Nutt DJ, Hudson AL. Identification of an I(2) binding protein from rabbit brain. Ann N Y Acad Sci. Dec 2003;1009:364–6. doi: https://doi.org/10.1196/annals.1304.048

    Article  CAS  PubMed  Google Scholar 

  157. Kumar A, Koistinen NA, Malarte ML, et al. Astroglial tracer BU99008 detects multiple binding sites in Alzheimer’s disease brain. Mol Psychiatry. Oct 2021;26(10):5833–5847. doi: https://doi.org/10.1038/s41380-021-01101-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Calsolaro V, Matthews PM, Donat CK, et al. Astrocyte reactivity with late-onset cognitive impairment assessed in vivo using (11)C-BU99008 PET and its relationship with amyloid load. Mol Psychiatry. Oct 2021;26(10):5848–5855. doi: https://doi.org/10.1038/s41380-021-01193-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Livingston NR, Calsolaro V, Hinz R, et al. Relationship between astrocyte reactivity, using novel (11)C-BU99008 PET, and glucose metabolism, grey matter volume and amyloid load in cognitively impaired individuals. Mol Psychiatry. Apr 2022;27(4):2019–2029. doi: https://doi.org/10.1038/s41380-021-01429-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Waniewski RA, Martin DL. Preferential utilization of acetate by astrocytes is attributable to transport. J Neurosci. Jul 15 1998;18(14):5225–33. doi: https://doi.org/10.1523/JNEUROSCI.18-14-05225.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kato H, Okuno T. Functional imaging of astrocyte activity. Neural Regen Res. Jun 2021;16(6):1206–1207. doi: https://doi.org/10.4103/1673-5374.300432

    Article  CAS  PubMed  Google Scholar 

  162. Duong MT, Chen YJ, Doot RK, et al. Astrocyte activation imaging with 11C-acetate and amyloid PET in mild cognitive impairment due to Alzheimer pathology. Nucl Med Commun. Nov 1 2021;42(11):1261–1269. doi: https://doi.org/10.1097/MNM.0000000000001460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Nam M-H, Ko HY, Lee S, et al. Visualization of reactive astrocytes in living brain of Alzheimer’s disease patient. bioRxiv. 2021:2021.04.13.439744. doi: https://doi.org/10.1101/2021.04.13.439744

  164. Kreimerman I, Porcal W, Olivera S, Oliver P, Savio E, Engler H. Synthesis of [18F]2B-SRF101: A Sulfonamide Derivative of the Fluorescent Dye Sulforhodamine 101. Curr Radiopharm. Nov 10 2017;10(3):212–220. doi: https://doi.org/10.2174/1874471010666170928112853

    Article  CAS  PubMed  Google Scholar 

  165. Schnell C, Shahmoradi A, Wichert SP, et al. The multispecific thyroid hormone transporter OATP1C1 mediates cell-specific sulforhodamine 101-labeling of hippocampal astrocytes. Brain Struct Funct. Jan 2015;220(1):193–203. doi: https://doi.org/10.1007/s00429-013-0645-0

    Article  CAS  PubMed  Google Scholar 

  166. Hagos L, Hulsmann S. Unspecific labelling of oligodendrocytes by sulforhodamine 101 depends on astrocytic uptake via the thyroid hormone transporter OATP1C1 (SLCO1C1). Neurosci Lett. Sep 19 2016;631:13–18. doi: https://doi.org/10.1016/j.neulet.2016.08.010

    Article  CAS  PubMed  Google Scholar 

  167. Kreimerman I, Reyes AL, Paolino A, et al. Biological Assessment of a (18) F-Labeled Sulforhodamine 101 in a Mouse Model of Alzheimer’s Disease as a Potential Astrocytosis Marker. Front Neurosci. 2019;13:734. doi: https://doi.org/10.3389/fnins.2019.00734

    Article  PubMed  PubMed Central  Google Scholar 

  168. Chételat G, Arbizu J, Barthel H, et al. Amyloid-PET and. Lancet Neurol. Nov 2020;19(11):951–962. doi: https://doi.org/10.1016/S1474-4422(20)30314-8

    Article  PubMed  Google Scholar 

  169. Ashraf A, Fan Z, Brooks DJ, Edison P. Cortical hypermetabolism in MCI subjects: a compensatory mechanism? Eur J Nucl Med Mol Imaging. Mar 2015;42(3):447–58. doi: https://doi.org/10.1007/s00259-014-2919-z

    Article  CAS  PubMed  Google Scholar 

  170. Carter SF, Chiotis K, Nordberg A, Rodriguez-Vieitez E. Longitudinal association between astrocyte function and glucose metabolism in autosomal dominant Alzheimer’s disease. Eur J Nucl Med Mol Imaging. Feb 2019;46(2):348–356. doi: https://doi.org/10.1007/s00259-018-4217-7

    Article  CAS  PubMed  Google Scholar 

  171. Zimmer ER, Parent MJ, Souza DG, et al. [(18)F]FDG PET signal is driven by astroglial glutamate transport. Nat Neurosci. Mar 2017;20(3):393–395. doi: https://doi.org/10.1038/nn.4492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Rocha A, Bellaver B, Souza DG, et al. Clozapine induces astrocyte-dependent FDG-PET hypometabolism. Eur J Nucl Med Mol Imaging. Jun 2022;49(7):2251–2264. doi: https://doi.org/10.1007/s00259-022-05682-3

    Article  CAS  PubMed  Google Scholar 

  173. Xiang X, Wind K, Wiedemann T, et al. Microglial activation states drive glucose uptake and FDG-PET alterations in neurodegenerative diseases. Sci Transl Med. Oct 13 2021;13(615):eabe5640. doi: https://doi.org/10.1126/scitranslmed.abe5640

    Article  CAS  PubMed  Google Scholar 

  174. Zimmer ER, Pascoal TA, Rosa-Neto P, Nordberg A, Pellerin L. Comment on “Microglial activation states drive glucose uptake and FDG-PET alterations in neurodegenerative diseases”. Sci Transl Med. Aug 24 2022;14(659):eabm8302. doi: https://doi.org/10.1126/scitranslmed.abm8302

    Article  Google Scholar 

  175. Xiang X, Tahirovic S, Ziegler S, Haass C, Brendel M. Response to Comment on “Microglial activation states drive glucose uptake and FDG-PET alterations in neurodegenerative diseases”. Sci Transl Med. Aug 24 2022;14(659):eabn5104. doi: https://doi.org/10.1126/scitranslmed.abn5104

    Article  PubMed  Google Scholar 

  176. Rouzer CA, Marnett LJ. Cyclooxygenases: structural and functional insights. J Lipid Res. Apr 2009;50 Suppl(Suppl):S29–34. doi: https://doi.org/10.1194/jlr.R800042-JLR200

    Article  Google Scholar 

  177. Ohnishi A, Senda M, Yamane T, et al. Exploratory human PET study of the effectiveness of (11)C-ketoprofen methyl ester, a potential biomarker of neuroinflammatory processes in Alzheimer’s disease. Nucl Med Biol. Jul 2016;43(7):438–44. doi: https://doi.org/10.1016/j.nucmedbio.2016.04.005

    Article  CAS  PubMed  Google Scholar 

  178. Shrestha S, Kim MJ, Eldridge M, et al. PET measurement of cyclooxygenase-2 using a novel radioligand: upregulation in primate neuroinflammation and first-in-human study. J Neuroinflammation. May 02 2020;17(1):140. doi: https://doi.org/10.1186/s12974-020-01804-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Murphy S, Simmons ML, Agullo L, et al. Synthesis of nitric oxide in CNS glial cells. Trends Neurosci. Aug 1993;16(8):323–8. doi: https://doi.org/10.1016/0166-2236(93)90109-y

    Article  CAS  PubMed  Google Scholar 

  180. Heneka MT, Feinstein DL. Expression and function of inducible nitric oxide synthase in neurons. J Neuroimmunol. Mar 1 2001;114(1–2):8–18. doi: https://doi.org/10.1016/s0165-5728(01)00246-6

    Article  CAS  PubMed  Google Scholar 

  181. Licinio J, Prolo P, McCann SM, Wong ML. Brain iNOS: current understanding and clinical implications. Mol Med Today. May 1999;5(5):225–32. doi: https://doi.org/10.1016/S1357-4310(99)01453-7

    Article  CAS  PubMed  Google Scholar 

  182. Zhou D, Lee H, Rothfuss JM, et al. Design and synthesis of 2-amino-4-methylpyridine analogues as inhibitors for inducible nitric oxide synthase and in vivo evaluation of [18F]6-(2-fluoropropyl)-4-methyl-pyridin-2-amine as a potential PET tracer for inducible nitric oxide synthase. J Med Chem. Apr 23 2009;52(8):2443–53. doi: https://doi.org/10.1021/jm801556h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Yeh SH, Huang WS, Chiu CH, et al. Automated Synthesis and Initial Evaluation of (4′-Amino-5′,8′-difluoro-1′H-spiro[piperidine-4,2′-quinazolin]-1-yl)(4-[(18)F]fluorophenyl)methanone for PET/MR Imaging of Inducible Nitric Oxide Synthase. Mol Imaging. 2021;2021:9996125. doi: https://doi.org/10.1155/2021/9996125

    Article  PubMed  PubMed Central  Google Scholar 

  184. Ionescu-Tucker A, Cotman CW. Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol Aging. Nov 2021;107:86–95. doi: https://doi.org/10.1016/j.neurobiolaging.2021.07.014

    Article  CAS  PubMed  Google Scholar 

  185. Simpson DSA, Oliver PL. ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants (Basel). Aug 13 2020;9(8)doi: https://doi.org/10.3390/antiox9080743

  186. Butterfield DA. Brain lipid peroxidation and alzheimer disease: Synergy between the Butterfield and Mattson laboratories. Ageing Res Rev. Dec 2020;64:101049. doi: https://doi.org/10.1016/j.arr.2020.101049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Teleanu DM, Niculescu AG, Lungu, II, et al. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. Int J Mol Sci. May 25 2022;23(11)doi: https://doi.org/10.3390/ijms23115938

  188. Carroll VN, Truillet C, Shen B, et al. [(11)C]Ascorbic and [(11)C] dehydroascorbic acid, an endogenous redox pair for sensing reactive oxygen species using positron emission tomography. Chem Commun (Camb). Apr 7 2016;52(27):4888–90. doi: https://doi.org/10.1039/c6cc00895j

    Article  CAS  PubMed  Google Scholar 

  189. Egami H, Nakagawa S, Katsura Y, et al. (18)F-Labeled dihydromethidine: positron emission tomography radiotracer for imaging of reactive oxygen species in intact brain. Org Biomol Chem. Apr 1 2020;18(13):2387–2391. doi: https://doi.org/10.1039/d0ob00126k

    Article  CAS  PubMed  Google Scholar 

  190. Hsieh CJ, Hou C, Zhu Y, et al. [(18)F]ROStrace detects oxidative stress in vivo and predicts progression of Alzheimer’s disease pathology in APP/PS1 mice. EJNMMI Res. Jul 27 2022;12(1):43. doi: https://doi.org/10.1186/s13550-022-00914-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Okazawa H, Ikawa M, Tsujikawa T, et al. Cerebral Oxidative Stress in Early Alzheimer’s Disease Evaluated by (64)Cu-ATSM PET/MRI: A Preliminary Study. Antioxidants (Basel). May 22 2022;11(5)doi: https://doi.org/10.3390/antiox11051022

  192. Huang LK, Chao SP, Hu CJ. Clinical trials of new drugs for Alzheimer disease. J Biomed Sci. Jan 06 2020;27(1):18. doi: https://doi.org/10.1186/s12929-019-0609-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Yagi T, Kanekiyo M, Ito J, et al. Identification of prognostic factors to predict cognitive decline of patients with early Alzheimer’s disease in the Japanese Alzheimer’s Disease Neuroimaging Initiative study. Alzheimers Dement (N Y). 2019;5:364–373. doi: https://doi.org/10.1016/j.trci.2019.06.004

    Article  PubMed  Google Scholar 

  194. Peluso MJ, Sans HM, Forman CA, et al. Plasma Markers of Neurologic Injury and Inflammation in People With Self-Reported Neurologic Postacute Sequelae of SARS-CoV-2 Infection. Neurol Neuroimmunol Neuroinflamm. Sep 2022;9(5)doi: https://doi.org/10.1212/NXI.0000000000200003

  195. Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. May 2011;7(3):280–92. doi: https://doi.org/10.1016/j.jalz.2011.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  196. van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in Early Alzheimer’s Disease. N Engl J Med. Nov 29 2022;doi: https://doi.org/10.1056/NEJMoa2212948

  197. Martin BK, Szekely C, Brandt J, et al. Cognitive function over time in the Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT): results of a randomized, controlled trial of naproxen and celecoxib. Arch Neurol. Jul 2008;65(7):896–905. doi: https://doi.org/10.1001/archneur.2008.65.7.nct70006

    Article  PubMed  Google Scholar 

  198. Meyer PF, Tremblay-Mercier J, Leoutsakos J, et al. INTREPAD: A randomized trial of naproxen to slow progress of presymptomatic Alzheimer disease. Neurology. Apr 30 2019;92(18):e2070–e2080. doi: https://doi.org/10.1212/WNL.0000000000007232

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Kobayashi K, Imagama S, Ohgomori T, et al. Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis. Mar 07 2013;4(3):e525. doi: https://doi.org/10.1038/cddis.2013.54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Escribano L, Simón AM, Gimeno E, et al. Rosiglitazone rescues memory impairment in Alzheimer’s transgenic mice: mechanisms involving a reduced amyloid and tau pathology. Neuropsychopharmacology. Jun 2010;35(7):1593–604. doi: https://doi.org/10.1038/npp.2010.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Gold M, Alderton C, Zvartau-Hind M, et al. Rosiglitazone monotherapy in mild-to-moderate Alzheimer’s disease: results from a randomized, doubleblind, placebo-controlled phase III study. Dement Geriatr Cogn Disord. 2010;30(2):131–46. doi: https://doi.org/10.1159/000318845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Butchart J, Brook L, Hopkins V, et al. Etanercept in Alzheimer disease: A randomized, placebo-controlled, double-blind, phase 2 trial. Neurology. May 26 2015;84(21):2161–8. doi: https://doi.org/10.1212/WNL.0000000000001617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Burns DK, Alexander RC, Welsh-Bohmer KA, et al. Safety and efficacy of pioglitazone for the delay of cognitive impairment in people at risk of Alzheimer’s disease (TOMMORROW): a prognostic biomarker study and a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Neurol. Jul 2021;20(7):537–547. doi: https://doi.org/10.1016/S1474-4422(21)00043-0

    Article  CAS  PubMed  Google Scholar 

  204. Elkahloun AG, Saavedra JM. Candesartan Neuroprotection in Rat Primary Neurons Negatively Correlates with Aging and Senescence: a Transcriptomic Analysis. Mol Neurobiol. Mar 2020;57(3):1656–1673. doi: https://doi.org/10.1007/s12035-019-01800-9

    Article  CAS  PubMed  Google Scholar 

  205. Huang W, Li Z, Zhao L, Zhao W. Simvastatin ameliorate memory deficits and inflammation in clinical and mouse model of Alzheimer’s disease via modulating the expression of miR-106b. Biomed Pharmacother. Aug 2017;92:46–57. doi: https://doi.org/10.1016/j.biopha.2017.05.060

    Article  CAS  PubMed  Google Scholar 

  206. Chen SD, Chuang YC, Lin TK, Yang JL. Alternative role of glucagon-like Peptide-1 receptor agonists in neurodegenerative diseases. Eur J Pharmacol. Jan 05 2023;938:175439. doi: https://doi.org/10.1016/j.ejphar.2022.175439

    Article  CAS  PubMed  Google Scholar 

  207. Nowell J, Blunt E, Edison P. Incretin and insulin signaling as novel therapeutic targets for Alzheimer’s and Parkinson’s disease. Mol Psychiatry. Jan 2023;28(1):217–229. doi: https://doi.org/10.1038/s41380-022-01792-4

    Article  CAS  PubMed  Google Scholar 

  208. Moussa C, Hebron M, Huang X, et al. Resveratrol regulates neuroinflammation and induces adaptive immunity in Alzheimer’s disease. J Neuroinflammation. Jan 03 2017;14(1):1. doi: https://doi.org/10.1186/s12974-016-0779-0

    Article  PubMed  PubMed Central  Google Scholar 

  209. Canhada S, Castro K, Perry IS, Luft VC. Omega-3 fatty acids’ supplementation in Alzheimer’s disease: A systematic review. Nutr Neurosci. Oct 2018;21(8):529–538. doi: https://doi.org/10.1080/1028415X.2017.1321813

    Article  CAS  PubMed  Google Scholar 

  210. Chen H, Liu S, Ji L, et al. Folic Acid Supplementation Mitigates Alzheimer’s Disease by Reducing Inflammation: A Randomized Controlled Trial. Mediators Inflamm. 2016;2016:5912146. doi: https://doi.org/10.1155/2016/5912146

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement and Funding

ERZ serves in the scientific advisory board of Next Innovative Therapeutics (Nintx). The other authors declare that they have no competing interests. We thank Marco De Bastiani from Universiade Federal do Rio Grande do Sul for the fruitful discussion and for revising the final draft. P.R-N and SG are funded by Colin J. Adair Charitable Foundation, THE Weston Brain Institute, Canadian Institutes of Health Research (CIHR) [MOP-11-51-31; RFN 152985, 159815, 162303], Canadian Consortium of Neurodegeneration and Aging (CCNA; MOP-11-51-31 -team 1), the Alzheimer’s Association [NIRG-12-92090, NIRP-12-259245], Brain Canada Foundation (CFI Project 34874; 33397), the Fonds de Recherche du Québec — Santé (FRQS; Chercheur Boursier, 2020-VICO-279314). ERZ is funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [#312410/2018- 2; #435642/2018-9; #312306/2021-0; 409066/2022-2]; Fundação de Amparo a pesquisa do Rio Grande do Sul (FAPERGS) [21/2551-0000673-0]; Alzheimer’s Association [AARGD-21-850670]; Alzheimer’s Association and National Academy of Neuropsycology [ALZ-NAN-22-928381].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo R. Zimmer.

Ethics declarations

Conflict of interest: ERZ serves in the scientific advisory board of Next Innovative Therapeutics (Nintx). The other authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bieger, A., Rocha, A., Bellaver, B. et al. Neuroinflammation Biomarkers in the AT(N) Framework Across the Alzheimer’s Disease Continuum. J Prev Alzheimers Dis 10, 401–417 (2023). https://doi.org/10.14283/jpad.2023.54

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14283/jpad.2023.54

Keywords

Navigation