Skip to main content
Log in

Dependence of Bioavailability on Mean Absorption Time: What Does It Tell Us?

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The extent and rate of bioavailability are fundamental measures to characterize the pharmacokinetics of drugs after oral administration. Together with bioavailability (F), the mean absorption time (MAT) can be used to define the rate of bioavailability, i.e., the rate of drug absorption. Previous results suggest that F may depend on MAT. Estimates of F and MAT were obtained from the input function (sum of two inverse Gaussian functions) used to model the oral absorption process. The estimation was performed by population analysis (nonlinear mixed-effects modeling) based on data from bioavailability studies in healthy volunteers. For trospium and ketamine, F decreased significantly with increasing MAT, while for propiverine, a significant increase was observed. Thus, the interindividual variability in F could be largely attributed to the interindividual variability in MAT. For trospium and propiverine, the relative dispersion (normalized variance) of the absorption time distribution increased significantly with MAT. For trospium and propiverine, the plot of F versus MAT provides information about the effect of gastrointestinal transit on drug absorption. In contrast, an increase in hepatic extraction with increasing MAT is responsible for the dependence of F on MAT. The F versus MAT plot is suggested as a simple diagnostic tool in evaluating the results of bioavailability studies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cutler DJ. Theory of the mean absorption time, an adjunct to conventional bioavailability studies. J Pharm Pharmacol. 1978;30(8):476–8. https://doi.org/10.1111/j.2042-7158.1978.tb13296.x.

    Article  CAS  PubMed  Google Scholar 

  2. Weiss M. The relevance of residence time theory to pharmacokinetics. Eur J Clin Pharmacol. 1992;43(6):571–9. https://doi.org/10.1007/BF02284953.

    Article  CAS  PubMed  Google Scholar 

  3. Weiss M. Generalizations in linear pharmacokinetics using properties of certain classes of residence time distributions. II. Log-concave concentration-time curves following oral administration. J Pharmacokinet Biopharm. 1987;15(1):57–74. https://doi.org/10.1007/BF01062939.

    Article  CAS  PubMed  Google Scholar 

  4. May K, Giessmann T, Wegner D, Oertel R, Modess C, Oswald S, et al. Oral absorption of propiverine solution and of the immediate and extended release dosage forms: influence of regioselective intestinal elimination. Eur J Clin Pharmacol. 2008;64(11):1085–92. https://doi.org/10.1007/s00228-008-0528-0.

    Article  CAS  PubMed  Google Scholar 

  5. Weiss M, Sermsappasuk P, Siegmund W. Modeling the heterogeneous intestinal absorption of propiverine extended-release. Eur J Pharm Sci. 2015;76:133–7. https://doi.org/10.1016/j.ejps.2015.05.010.

    Article  CAS  PubMed  Google Scholar 

  6. Abebe BT, Weiss M, Modess C, Roustom T, Tadken T, Wegner D, et al. Effects of the P-glycoprotein inhibitor clarithromycin on the pharmacokinetics of intravenous and oral trospium chloride: a 4-way crossover drug-drug interaction study in healthy subjects. J Clin Pharmacol. 2019. https://doi.org/10.1002/jcph.1421.

    Article  PubMed  Google Scholar 

  7. Abebe BT, Weiss M, Modess C, Tadken T, Wegner D, Meyer MJ, et al. Pharmacokinetic drug-drug interactions between trospium chloride and ranitidine substrates of organic cation transporters in healthy human subjects. J Clin Pharmacol. 2020;60(3):312–23. https://doi.org/10.1002/jcph.1523.

    Article  CAS  PubMed  Google Scholar 

  8. Tadken T, Weiss M, Modess C, Wegner D, Roustom T, Neumeister C, et al. Trospium chloride is absorbed from two intestinal “absorption windows” with different permeability in healthy subjects. Int J Pharm. 2016;515(1–2):367-73 S0378-5173(16)30973-5. https://doi.org/10.1016/j.ijpharm.2016.10.030.

    Article  CAS  PubMed  Google Scholar 

  9. Weiss M, Siegmund W. Pharmacokinetic modeling of ketamine enantiomers and their metabolites after administration of prolonged-release ketamine with emphasis on 2,6-hydroxynorketamines. Clin Pharmacol Drug Dev. 2022;11(2):194–206. https://doi.org/10.1002/cpdd.993.

    Article  CAS  PubMed  Google Scholar 

  10. Dahan A, Miller JM, Amidon GL. Prediction of solubility and permeability class membership: provisional BCS classification of the world’s top oral drugs. AAPS J. 2009;11(4):740–6. https://doi.org/10.1208/s12248-009-9144-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weiss M, D’Argenio DZ, Siegmund W. Analysis of complex absorption after multiple dosing: application to the interaction between the P-glycoprotein substrate talinolol and rifampicin. Pharm Res. 2022;39(12):3293–300. https://doi.org/10.1007/s11095-022-03397-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oswald S, Terhaag B, Siegmund W. In vivo probes of drug transport: commonly used probe drugs to assess function of intestinal P-glycoprotein (ABCB1) in humans. Handb Exp Pharmacol. 2011;201:403–47. https://doi.org/10.1007/978-3-642-14541-4_11.

    Article  CAS  Google Scholar 

  13. Csajka C, Drover D, Verotta D. The use of a sum of inverse Gaussian functions to describe the absorption profile of drugs exhibiting complex absorption. Pharm Res. 2005;22(8):1227–35. https://doi.org/10.1007/s11095-005-5266-8.

    Article  CAS  PubMed  Google Scholar 

  14. Weiss M. A novel extravascular input function for the assessment of drug absorption in bioavailability studies. Pharm Res. 1996;13(10):1547–53.

    Article  CAS  PubMed  Google Scholar 

  15. Weiss M. Empirical models for fitting of oral concentration time curves with and without an intravenous reference. J Pharmacokinet Pharmacodyn. 2017;44(3):193–201. https://doi.org/10.1007/s10928-017-9507-3;10.1007/s10928-017-9507-3.

    Article  PubMed  Google Scholar 

  16. Riegelman S, Collier P. The application of statistical moment theory to the evaluation of in vivo dissolution time and absorption time. J Pharmacokinet Biopharm. 1980;8(5):509–34. https://doi.org/10.1007/BF01059549.

    Article  CAS  PubMed  Google Scholar 

  17. D’Argenio D, Schumitzky A, Wang X. User’s guide: pharmacokinetic/pharmacodynamic systems analysis software. Los Angeles, CA: Biomedical Simulations Resource; 2009.

    Google Scholar 

  18. Weiss M. Relationship between dissolution rate in vitro and absorption rate in vivo of ketamine prolonged-release tablets. Eur J Drug Metab Pharmacokinet. 2023. https://doi.org/10.1007/s13318-022-00812-6.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bergstrand M, Soderlind E, Weitschies W, Karlsson MO. Mechanistic modeling of a magnetic marker monitoring study linking gastrointestinal tablet transit, in vivo drug release, and pharmacokinetics. Clin Pharmacol Ther. 2009;86(1):77–83. https://doi.org/10.1038/clpt.2009.43.

    Article  CAS  PubMed  Google Scholar 

  20. Cora LA, Romeiro FG, Americo MF, Oliveira RB, Baffa O, Stelzer M, et al. Gastrointestinal transit and disintegration of enteric coated magnetic tablets assessed by ac biosusceptometry. Eur J Pharm Sci. 2006;27(1):1–8. https://doi.org/10.1016/j.ejps.2005.08.009.

    Article  CAS  PubMed  Google Scholar 

  21. Kolbow J, Modess C, Wegner D, Oswald S, Maritz MA, Rey H, et al. Extended-release but not immediate-release and subcutaneous methylnaltrexone antagonizes the loperamide-induced delay of whole-gut transit time in healthy subjects. J Clin Pharmacol. 2015. https://doi.org/10.1002/jcph.624.

    Article  PubMed  Google Scholar 

  22. Abuhelwa AY, Foster DJR, Upton RN. A quantitative review and meta-models of the variability and factors affecting oral drug absorption-part I: gastrointestinal pH. AAPS J. 2016;18(5):1309–21. https://doi.org/10.1208/s12248-016-9952-8.

    Article  CAS  PubMed  Google Scholar 

  23. Keller F, Kunzendorf U, Walz G, Haller H, Offermann G. Saturable first-pass kinetics of propranolol. J Clin Pharmacol. 1989;29(3):240–5. https://doi.org/10.1002/j.1552-4604.1989.tb03320.x.

    Article  CAS  PubMed  Google Scholar 

  24. Mistry B, Leslie JL, Eddington ND. Influence of input rate on the stereospecific and nonstereospecific first pass metabolism and pharmacokinetics of metoprolol extended release formulations. Chirality. 2002;14(4):297–304. https://doi.org/10.1002/chir.10045.

    Article  CAS  PubMed  Google Scholar 

  25. Wagner JG. Propranolol: pooled Michaelis-Menten parameters and the effect of input rate on bioavailability. Clin Pharmacol Ther. 1985;37(5):481–7. https://doi.org/10.1038/clpt.1985.76.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M. W. analyzed the data. M. W. and W. S. wrote the manuscript.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiss, M., Siegmund, W. Dependence of Bioavailability on Mean Absorption Time: What Does It Tell Us?. AAPS J 25, 36 (2023). https://doi.org/10.1208/s12248-023-00803-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-023-00803-8

Keywords

Navigation