Skip to main content

Advertisement

Log in

Oral absorption of propiverine solution and of the immediate and extended release dosage forms: influence of regioselective intestinal elimination

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The muscarine receptor antagonist propiverine in immediate release tablet form (IR) undergoes presystemic elimination mediated by CYP450 enzymes and intestinal efflux transporters. The aim of our study with propiverine IR and extended release (ER) was to determine whether propiverine disposition is dose linear, to compare the pharmacokinetics of propiverine in oral solution with IR and ER and to show how absorption rate is associated with bioavailability.

Methods

The pharmacokinetics of propiverine administered as intravenous propiverine (15 mg), 10, 15, and 30 mg propiverine IR, an oral propiverine solution (15 mg) and 10, 15, 30, and 45 mg propiverine ER were measured in two randomized, controlled, single-dose, five-period, cross-over studies, with each case involving a study cohort of ten healthy Caucasian subjects.

Results

Disposition of propiverine IR and ER was not dose-related. The bioavailability of ER was 64.5 ± 16.1% compared to 50.3 ± 13.4% (non-significant) after administration of the IR and propiverine solution (42.6 ± 14.8%, p < 0.05). The mean absorption time (MAT) of ER (14.2 ± 4.79 h) was significantly longer than that of the solution and IR (3.94 ± 4.14 and 0.38 ± 3.79 h, respectively; both p < 0.05). The bioavailability of propiverine was significantly correlated to the MAT (r = 0.521, p < 0.001). Renal excretion of the metabolite M-23 after propiverine ER administration (6.7 ± 2.7%) was significantly lower than that after administration of the oral solution (10 ± 2.2%) and of IR (9.8 ± 2.7%; both p < 0.05).

Conclusions

The bioavailability of propiverine appears to be dependent on the intestinal site of dissolution and, consequently, on the extent of presystemic intestinal elimination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABCB1:

P-glycoprotein

ABCC2:

Multidrug resistance-associated protein 2 (MRP2)

Propiverine IR:

propiverine in immediate release dosage form

Propiverine ER:

propiverine in extended release dosage form

References

  1. Madersbacher H, Murtz G (2001) Efficacy, tolerability and safety profile of propiverine in the treatment of the overactive bladder (non-neurogenic and neurogenic). World J Urol 19:324–335

    Article  PubMed  CAS  Google Scholar 

  2. Michel MC, Hegde SS (2006) Treatment of the overactive bladder syndrome with muscarinic receptor antagonists: a matter of metabolites? Naunyn Schmiedebergs Arch Pharmacol 374:79–85

    Article  PubMed  CAS  Google Scholar 

  3. Wuest M, Hecht J, Christ T et al (2005) Pharmacodynamics of propiverine and three of its main metabolites on detrusor contraction. Br J Pharmacol 145:608–619

    Article  PubMed  CAS  Google Scholar 

  4. Wuest M, Weiss A, Waelbroeck M et al (2006) Propiverine and metabolites: differences in binding to muscarinic receptors and in functional models of detrusor contraction. Naunyn Schmiedebergs Arch Pharmacol 374:87–97

    Article  PubMed  CAS  Google Scholar 

  5. Madersbacher H, Halaska M, Voigt R et al (1999) A placebo-controlled, multicentre study comparing the tolerability and efficacy of propiverine and oxybutynin in patients with urgency and urge incontinence. BJU Int 84:646–651

    Article  PubMed  CAS  Google Scholar 

  6. Stohrer M, Madersbacher H, Richter R et al (1999) Efficacy and safety of propiverine in SCI-patients suffering from detrusor hyperreflexia—a double-blind, placebo-controlled clinical trial. Spinal Cord 37:196–200

    Article  PubMed  CAS  Google Scholar 

  7. Abrams P, Cardozo L, Chapple C et al (2006) Comparison of the efficacy, safety, and tolerability of propiverine and oxybutynin for the treatment of overactive bladder syndrome. Int J Urol 13:692–698

    Article  PubMed  CAS  Google Scholar 

  8. Stohrer M, Murtz G, Kramer G et al (2007) Propiverine compared to oxybutynin in neurogenic detrusor overactivity-results of a randomized, double-blind, multicenter clinical study. Eur Urol 51:235–242

    Article  PubMed  CAS  Google Scholar 

  9. Haustein KO, Huller G (1988) On the pharmacokinetics and metabolism of propiverine in man. Eur J Drug Metab Pharmacokinet 13:81–90

    PubMed  CAS  Google Scholar 

  10. Huller G, Haustein KO, Scheithauer S (1988) Studies on the metabolic pattern of propiverine in urine after single administration. Pharmazie 43:91–95

    PubMed  CAS  Google Scholar 

  11. Wengler A, Schneider T, Zschiesche M et al (1988) Studies on the metabolism of the bladder spasmolytic, propiverin (mictonorm) in humans. Pharmazie 43:652–653

    PubMed  CAS  Google Scholar 

  12. Siegmund W, Nigussie M, Tilahun K et al (1990) Anticholinergic properties of propiverine and its metabolites. Pharmazie 45:67–68

    PubMed  CAS  Google Scholar 

  13. Giessmann T, May K, Moritz KU et al (2004) Disposition of propiverine and its metabolites is influenced by MRP2. Naunyn-Schmiedebergs Arch Pharmacol 369:R156

    Article  Google Scholar 

  14. Kugimiya Y, Hanoaka K, Inada Y (1990) Phase I study of propiverine-hydrochloride. The first report. Single oral dosing study. Jpn J Clin Pharmacol Ther 21:555–565

    Google Scholar 

  15. Siddiqui MA, Perry CM, Scott LJ (2004) Oxybutynin extended-release: a review of its use in the management of overactive bladder. Drugs 64:885–912

    Article  PubMed  CAS  Google Scholar 

  16. van Kerrebroeck P, Kreder K, Jonas U et al (2001) Tolterodine once-daily: superior efficacy and tolerability in the treatment of the overactive bladder. Urology 57:414–421

    Article  PubMed  Google Scholar 

  17. Mouly S, Paine MF (2003) P-glycoprotein increases from proximal to distal regions of human small intestine. Pharm Res 20:1595–1599

    Article  PubMed  CAS  Google Scholar 

  18. Zimmermann C, Gutmann H, Hruz P et al (2005) Mapping of multidrug resistance gene 1 and multidrug resistance-associated protein isoform 1 to 5 MRNA expression along the human intestinal tract. Drug Metab Dispos 33:219–224

    Article  PubMed  CAS  Google Scholar 

  19. Englund G, Rorsman F, Ronnblom A et al (2006) Regional levels of drug transporters along the human intestinal tract: co-expression of ABC and SLC transporters and comparison with caco-2 cells. Eur J Pharm Sci 29:269–277

    Article  PubMed  CAS  Google Scholar 

  20. Nakamura T, Sakaeda T, Ohmoto N et al (2002) Real-time quantitative polymerase chain reaction for MDR1, MRP1, MRP2, and CYP3A-MRNA levels in caco-2 cell lines, human duodenal enterocytes, normal colorectal tissues, and colorectal adenocarcinomas. Drug Metab Dispos 30:4–6

    Article  PubMed  CAS  Google Scholar 

  21. Zhang QY, Dunbar D, Ostrowska A et al (1999) Characterization of human small intestinal cytochromes P-450. Drug Metab Dispos 27:804–809

    PubMed  CAS  Google Scholar 

  22. Paine MF, Khalighi M, Fisher JM et al (1997) Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J Pharmacol Exp Ther 283:1552–1562

    PubMed  CAS  Google Scholar 

  23. Oertel R, Richter K, Fauler J et al (2002) Increasing sample throughput in pharmacological studies by using dual-column liquid chromatography with tandem mass spectrometry. J Chromatogr A 948:187–192

    Article  PubMed  CAS  Google Scholar 

  24. Oertel R, Kilian B, Siegmund W et al (2006) Determination of propiverine and its metabolites in rat samples by liquid chromatography-tandem mass spectrometry. J Chromatogr A

  25. Richter K, Scheithauer S, Thummler D (1998) High-performance liquid chromatographic determination of propiverine and its N-oxide in human serum. J Chromatogr B Biomed Sci Appl 708:325–329

    Article  PubMed  CAS  Google Scholar 

  26. Aronson JK, Dengler HJ, Dettli L et al (1988) Standardization of symbols in clinical pharmacology. Eur J Clin Pharmacol 35:1–7

    Article  PubMed  CAS  Google Scholar 

  27. Rovner ES, Wein AJ (2002) Once-daily, extended-release formulations of antimuscarinic agents in the treatment of overactive bladder: a review. Eur Urol 41:6–14

    Article  PubMed  CAS  Google Scholar 

  28. Gupta SK, Sathyan G (1999) Pharmacokinetics of an oral once-a-day controlled-release oxybutynin formulation compared with immediate-release oxybutynin. J Clin Pharmacol 39:289–296

    PubMed  CAS  Google Scholar 

  29. Olsson B, Szamosi J (2001) Multiple dose pharmacokinetics of a new once daily extended release tolterodine formulation versus immediate release tolterodine. Clin Pharmacokinet 40:227–235

    Article  PubMed  CAS  Google Scholar 

  30. Massad CA, Kogan BA, Trigo-Rocha FE (1992) The pharmacokinetics of intravesical and oral oxybutynin chloride. J Urol 148:595–597

    PubMed  CAS  Google Scholar 

  31. Chan LM, Lowes S, Hirst BH (2004) The ABCs of drug transport in intestine and liver: efflux proteins limiting drug absorption and bioavailability. Eur J Pharm Sci 21:25–51

    Article  PubMed  CAS  Google Scholar 

  32. Dietrich CG, Geier A, Elferink RPJO (2003) ABC of oral bioavailability: transporters as gatekeepers in the gut. Gut 52:1788–1795

    Article  PubMed  CAS  Google Scholar 

  33. Takano M, Yumoto R, Murakami T (2006) Expression and function of efflux drug transporters in the intestine. Pharmacol Ther 109:137–161

    Article  PubMed  CAS  Google Scholar 

  34. Junemann KP, Hessdorfer E, Unamba-Oparah I et al (2006) Propiverine hydrochloride immediate and extended release: comparison of efficacy and tolerability in patients with overactive bladder. Urol Int 77:334–339

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Hannelore Kreher and Renate Peters for their excellent technical assistance. This work was supported by an institutional grant of APOGEPHA Arzneimittel GmbH Dresden and the German Federal Ministry for Education and Research (grant 01 GG 9845/5, 01 ZZ 0103). Manfred Braeter is an employee of APOGEPHA. All other authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Siegmund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

May, K., Giessmann, T., Wegner, D. et al. Oral absorption of propiverine solution and of the immediate and extended release dosage forms: influence of regioselective intestinal elimination. Eur J Clin Pharmacol 64, 1085–1092 (2008). https://doi.org/10.1007/s00228-008-0528-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-008-0528-0

Keywords

Navigation