Skip to main content

Physiologically Based Finite Time Pharmacokinetic (PBFTPK) Models: Applications

  • Chapter
  • First Online:
Advances in Pharmacokinetics and Pharmacodynamics

Part of the book series: AAPS Introductions in the Pharmaceutical Sciences ((AAPSINSTR,volume 9))

  • 366 Accesses

Abstract

The concept of finite absorption time is applied to a detailed discussion of generated models in bioavailability and bioequivalence. Considering detailed expressions for full and partial areas under the curve (AUCs), interesting conclusions are arrived at. Old digoxin pharmacokinetic data are reanalyzed under this prism. Physiologically based pharmacokinetic modeling and pharmacometrics are contrasted with the models derived from the Finite Absorption Time (FAT) concept and complicated concentration profiles successfully fit with these models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Macheras P (2019) On an unphysical hypothesis of Bateman equation and its implications for pharmacokinetics. Pharm Res 36:94. https://doi.org/10.1007/s11095-019-2633-4

    Article  CAS  PubMed  Google Scholar 

  2. Macheras P, Chryssafidis P (2020) Revising pharmacokinetics of oral drug absorption: I models based on biopharmaceutical/physiological and finite absorption time concepts. Pharm Res 37:187. https://doi.org/10.1007/s11095-020-02894-w

    Article  CAS  PubMed  Google Scholar 

  3. Chryssafidis P, Tsekouras AA, Macheras P (2021) Revising pharmacokinetics of oral drug absorption: II bioavailability-bioequivalence considerations. Pharm Res 38:1345–1356. https://doi.org/10.1007/s11095-021-03078-w

    Article  CAS  PubMed  Google Scholar 

  4. Tsekouras AA, Macheras P (2021) Re-examining digoxin bioavailability after half a century: time for changes in the bioavailability concepts. Pharm Res 38:1635–1638. https://doi.org/10.1007/s11095-021-03121-w

    Article  CAS  PubMed  Google Scholar 

  5. Chryssafidis P, Tsekouras AA, Macheras P (2022) Re-writing oral pharmacokinetics using physiologically based finite time pharmacokinetic (PBFTPK) models. Pharm Res 39. https://doi.org/10.1007/s11095-022-03230-0

  6. Tsekouras AA, Macheras P (2022) Columbus’ egg: oral drugs are absorbed in finite time. Eur J Pharm Sci 176:106265. https://doi.org/10.1016/j.ejps.2022.106265

    Article  CAS  PubMed  Google Scholar 

  7. Macheras P, Tsekouras AA (2023) Revising oral pharmacokinetics, bioavailability and bioequivalence based on the finite absorption time concept. Springer, Berlin

    Book  Google Scholar 

  8. Iranpour P, Lall C, Houshyar R, Helmy M, Yang A, Choi JI, Ward G, Goodwin SC (2016) Altered Doppler flow patterns in cirrhosis patients: an overview. Ultrasonography 35:3–12. https://doi.org/10.14366/usg.15020

    Article  PubMed  Google Scholar 

  9. Dost FH (1953) Der Blutspiegel. Kinetik der Konzentrationsverläufe in der Kreislaufflüssigkeit, Thieme, Leipzi

    Google Scholar 

  10. Alimpertis N, Tsekouras AA, Macheras P (2022) Revising the assessment of bioequivalence in the light of finite absorption time concept: the axitinib case. Poster submitted to 30th PAGE meeting, Ljubljana, Slovenia, 28 June–1 July, 2022

    Google Scholar 

  11. Sanchez N, Sheiner LB, Halkin H, Melmon KL (1973) Pharmacokinetics of digoxin: interpreting bioavailability. Br Med J 4:132. https://doi.org/10.1136/bmj.4.5885.132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Center for Drug Evaluation and Research (2002) Digoxin Bioequivalency Review 76268. https://www.accessdata.fda.gov/drugsatfda_docs/anda/2002/76268_Digoxin_Bioeqr.pdf

  13. Food and Drug Administration (2017) Center for Drug Evaluation and Research (CDER) waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid Oral dosage forms based on a biopharmaceutics classification system. Guidance for Industry 82 FR 61011. https://www.federalregister.gov/d/2017-27786

  14. European Medicines Agency (2010) Committee for medicinal products for human use (CHMP) guideline on the investigation of bioequivalence, London

    Google Scholar 

  15. Abuhelwa A, Foster DJR, Upton RN (2016) A quantitative review and meta-models of the variability and factors affecting oral drug absorption-part II: gastrointestinal transit time. AAPS J 18:1322–1333. https://doi.org/10.1208/s12248-016-9953-7

    Article  CAS  PubMed  Google Scholar 

  16. Lovering EG, McGilveray IJ, McMillan I, Tostowaryk W (1975) Comparative bioavailabilities from truncated blood level curves. J Pharm Sci 64:1521–1524. https://doi.org/10.1002/jps.2600640921

    Article  CAS  PubMed  Google Scholar 

  17. Sugano K (2012) Biopharmaceutics modeling and simulations: theory, practice, methods, and applications

    Google Scholar 

  18. Sugano K (2021) Lost in modelling and simulation? ADMET DMPK 9:75–109

    Article  PubMed  PubMed Central  Google Scholar 

  19. Endrenyi L, Tothfalusi L (1997) Truncated AUC evaluates effectively the bioequivalence of drugs with long half-lives. Int J Clin Pharmacol Ther 35:142–150

    CAS  PubMed  Google Scholar 

  20. Charalabidis A, Sfouni M, Bergstrom C, Macheras P (2019) BCS and BDDCS: beyond guidelines (invited review). Int J Pharm 566:264–281. https://doi.org/10.1016/j.ijpharm.2019.05.041

    Article  CAS  PubMed  Google Scholar 

  21. Sager JE, Yu J, Ragueneau-Majlessi I, Isoherranen N (2015) Physiologically Based pharmacokinetic (PBPK) Modeling and simulation approaches: a systematic review of published models, applications, and model verification. Drug Metab Dispos 43:1823–1837. https://doi.org/10.1124/dmd.115.065920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sjögren E, Westergren J, Grant I, Hanisch G, Lindfors L, Lennernäs H, Abrahamsson B, Tannergren C (2013) In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim. Eur J Pharm Sci 49:679–698. https://doi.org/10.1016/j.ejps.2013.05.019

    Article  CAS  PubMed  Google Scholar 

  23. Rinaki E, Dokoumetzidis A, Valsami G, Macheras P (2004) Identification of biowaivers among class II drugs: theoretical justification and practical examples. Pharm Res 21:1567–1572. https://doi.org/10.1023/B:PHAM.0000041450.25106.c8

    Article  CAS  PubMed  Google Scholar 

  24. Macheras P, Karalis V (2014) A non-binary biopharmaceutical classification of drugs: the ABΓ system. Int J Pharm 464:85–90. https://doi.org/10.1016/j.ijpharm.2014.01.022

    Article  CAS  PubMed  Google Scholar 

  25. Endrenyi L, Fritsch S, Yan W (1991) Cmax/AUC is a clearer measure than Cmax for absorption rates in investigations of bioequivalence. Int J Clin Pharmacol Ther Toxicol 29:394–399

    CAS  PubMed  Google Scholar 

  26. Chen ML (1992) An alternative approach for assessment of rate of absorption in bioequivalence studies. Pharm Res 9:1380–1385. https://doi.org/10.1023/A:1015842425553

    Article  CAS  PubMed  Google Scholar 

  27. Chen ML, Davit B, Lionberger R, Wahba Z, Ahn HY, Yu LX (2011) Using partial area for evaluation of bioavailability and bioequivalence. Pharm Res 28:1939–1947. https://doi.org/10.1007/s11095-011-0421-x

    Article  CAS  PubMed  Google Scholar 

  28. Macheras P, Symillides M, Reppas C (1996) An improved intercept method for the assessment of absorption rate in bioequivalence studies. Pharm Res 13:1755–1758. https://doi.org/10.1023/A:1016421630290

    Article  CAS  PubMed  Google Scholar 

  29. Macheras P, Symillides M, Reppas C (1994) The cutoff time point of the partial area method for assessment of rate of absorption in bioequivalence studies. Pharm Res 11:831–834. https://doi.org/10.1023/A:1018921622981

    Article  CAS  PubMed  Google Scholar 

  30. Soulele K, Macheras P, Silvestro L, Rizea Savu S, Karalis V (2015) Population pharmacokinetics of fluticasone propionate/salmeterol using two different dry powder inhalers. Eur J Pharm Sci 80:33–42. https://doi.org/10.1016/j.ejps.2015.08.009

    Article  CAS  PubMed  Google Scholar 

  31. Soulele K, Macheras P, Karalis V (2018) On the pharmacokinetics of two inhaled budesonide/formoterol combinations in asthma patients using modeling approaches. Pulm Pharmacol Ther 48:168–178. https://doi.org/10.1016/j.pupt.2017.12.002

    Article  CAS  PubMed  Google Scholar 

  32. Soulele K, Macheras P, Karalis V (2017) Pharmacokinetic analysis of inhaled salmeterol in asthma patients: evidence from two dry powder inhalers. Biopharm Drug Dispos 38:407–419. https://doi.org/10.1002/bdd.2077

    Article  CAS  PubMed  Google Scholar 

  33. FDA Guidance (2003) Bioavailability and bioequivalence studies for nasal aerosols and nasal sprays for loca action

    Google Scholar 

  34. Borges NCDC, Astigarraga RB, Sverdloff CE, Borges BC, Paiva TR, Galvinas PR, Moreno RA (2011) Budesonide quantification by HPLC coupled to atmospheric pressure photoionization (APPI) tandem mass spectrometry. Application to a comparative systemic bioavailability of two budesonide formulations in healthy volunteers. J Chromatogr B 879:236–242. https://doi.org/10.1016/j.jchromb.2010.12.003

    Article  CAS  Google Scholar 

  35. Pesic M, Schippers F, Saunders R, Webster L, Donsbach M, Stoehr T (2020) Pharmacokinetics and pharmacodynamics of intranasal remimazolam-a randomized controlled clinical trial. Eur J Clin Pharmacol 76:1505–1516. https://doi.org/10.1007/s00228-020-02984-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meyer MC, Jarvi EJ, Straughn AB, Pelsor FR, Williams RL, Shah VP (1999) Bioequivalence of immediate-release theophylline capsules. Biopharm Drug Dispos 20:417–419. https://doi.org/10.1002/1099-081x(199912)20:9<417::aid-bdd205>3.0.co;2-w

    Article  CAS  PubMed  Google Scholar 

  37. Hendeles L, Weinberger M, Bighley L (1977) Absolute bioavailability of oral theophylline. Am J Hosp Pharm 34:525–527. https://doi.org/10.1093/ajhp/34.5.525

    Article  CAS  PubMed  Google Scholar 

  38. Brown J, Chien C, Timmins P, Dennis A, Doll W, Sandefer E, Page R, Nettles RE, Zhu L, Grasela D (2013) Compartmental absorption modeling and site of absorption studies to determine feasibility of an extended-release formulation of an hiv-1 attachment inhibitor phosphate ester prodrug. J Pharm Sci 102:1742–1751. https://doi.org/10.1002/jps.23476

    Article  CAS  PubMed  Google Scholar 

  39. Wu D, Tsekouras AA, Macheras P, Kesisoglou F (2022) Physiologically based pharmacokinetic models under the prism of the finite absorption time concept. Pharm Res 39:1–11. https://doi.org/10.1007/s11095-022-03357-0

    Article  CAS  Google Scholar 

  40. Zhou H (2003) Pharmacokinetic strategies in deciphering atypical drug absorption profiles. J Clin Pharmacol 43:211–227. https://doi.org/10.1177/0091270002250613

    Article  CAS  PubMed  Google Scholar 

  41. Cosson VF, Fuseau E (1999) Mixed effect modeling of Sumatriptan pharmacokinetics during drug development: II. From healthy subjects to phase 2 dose ranging in patients. J Pharmacokinet Pharmacodyn 27:149–171. https://doi.org/10.1023/A:1020601906027

    Article  CAS  Google Scholar 

  42. Garrigues TM, Martin U, Peris-Ribera JE et al (1991) Dose-dependent absorption and elimination of cefadroxil in man. Eur J Clin Pharmacol 41:179–183. https://doi.org/10.1007/BF00265914

    Article  CAS  PubMed  Google Scholar 

  43. Macheras P, Tsekouras AA (2022) The finite absorption time (FAT) concept en route to PBPK modeling and pharmacometrics. J Pharmacokinet Pharmacodyn

    Google Scholar 

  44. Wendling T, Ogungbenro K, Pigeolet E, Dumitras S, Woessner R, Aarons L (2015) Model-based evaluation of the impact of formulation and food intake on the complex oral absorption of mavoglurant in healthy subjects. Pharm Res 32:1764–1778. https://doi.org/10.1007/s11095-014-1574-1

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panos Macheras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsekouras, A.A., Alimpertis, N., Macheras, P. (2023). Physiologically Based Finite Time Pharmacokinetic (PBFTPK) Models: Applications. In: Macheras, P. (eds) Advances in Pharmacokinetics and Pharmacodynamics. AAPS Introductions in the Pharmaceutical Sciences, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-031-29541-6_4

Download citation

Publish with us

Policies and ethics