1 Introduction

Fractional arithmetic theory has gained a special place in various sciences. In recent years, numerous works have been published in the field of fractional integro-differential equations such as q-differences [16], positive solutions [7, 8], fractional integro-differential equations [913], approximate solutions [1416], hybrid problems [17, 18], and applied modelings [1923]. It has been showed that one of the best methods for mathematical describing of complicate phenomena is modeling of the problems as singular fractional integro-differential equations (see [2426]) which have been studied by some researchers (see, for example, [2730]). Note that most published works on singular fractional equations have studied weak singularities, while it is important we try to review strong singular fractional integro-differential equations. There are a few works on strong singularities [3133].

In 2014, Jleli et al. studied the existence of a positive solution for the singular fractional boundary value problem \(D^{\alpha } u(t)+ f(t, u(t))=0\) with boundary value conditions \(u(0) = u'(0) =0\) and \(u'(1) = \sum_{i=1}^{m-2} \beta _{i} u'(\xi _{i})\), where \(0 < t <1\), \(2 < \alpha \leq 3, 0 <\xi _{1} < \cdots< \xi _{m-2} < 1\), \(f: (0,1] \times \mathbb{R} \to \mathbb{R}\) is a continuous function, \(f(t, x)\) is singular at \(t=0\), and \(D^{\alpha }\) is the Caputo derivative [8]. In 2016, Shabibi et al. reviewed the multi-singular pointwise defined fractional integro-differential equation \(D^{\mu } x(t)+ f(t, x(t), x'(t), D^{\beta }x(t), I^{p}x(t)) =0\) under different boundary conditions, where \(\mu \in [2,3)\) or \(\mu \in [3,\infty )\), \(0\leq t\leq 1\), \(x \in C^{1}[0,1]\), \(\beta , \xi , \eta \in (0,1)\), \(p>1\), \(D^{\mu }\) is the Caputo fractional derivative of order μ and \(f:[0,1] \times \mathbb{R}^{5} \to \mathbb{R}\) is a function such that \(f(t,\cdot,\cdot,\cdot,\cdot)\) is singular at some points \(t\in [0,1]\) [28].

In 2018, Baleanu et al. investigated the existence of solutions for the pointwise defined problem \(D^{\alpha } x(t)+ f(t , x(t), x'(t), D^{\beta }x(t), \int _{0}^{t} h( \xi ) x(\xi ) \,d\xi , \phi (x(t)))=0\) with boundary value conditions \(x(1)=x(0)=x''(0)=x^{n}(0)=0\), where \(\alpha \geq 2\), \(\lambda , \mu , \beta \in (0,1)\), \(\phi: X \rightarrow X\) is a mapping such that \(\| \phi (x) - \phi (y)\| \leq \theta _{0} \|x-y\| + \theta _{1} \|x'-y' \|\) for some nonnegative real numbers \(\theta _{0}\) and \(\theta _{1} \in [0,\infty )\) and all \(x,y \in X\), \(D^{\alpha }\) is the Caputo fractional derivative of order α, \(f(t,x_{1}(t),\ldots, x_{5}(t))=f_{1}(t,x_{1}(t),\ldots, x_{5}(t))\) for all \(t\in [0,\lambda )\), \(f(t,x_{1}(t),\ldots, x_{5}(t))=f_{2}(t,x_{1}(t),\ldots, x_{5}(t))\) for all \(t\in [\lambda ,\mu ]\) and \(f(t,x_{1}(t),\ldots, x_{5}(t))=f(t,x_{1}(t),\ldots, x_{5}(t))\) for all \(t\in (\mu ,1]\), \(f_{1}(t,\cdot,\cdot,\cdot,\cdot)\) and \(f_{3}(t,\cdot,\cdot,\cdot,\cdot)\) are continuous on \([0,\lambda )\) and \((\mu ,1]\), and \(f_{2}(t,\cdot,\cdot,\cdot,\cdot)\) is multi-singular [25]. They published another work on a three-step crisis integro-differential equation [26]. In 2020, Talaee et al. reviewed the existence of solutions for the fractional differential pointwise defined problem \(D^{\alpha } x(t) = f(t, x(t), x'(t), D^{\beta }x(t), \int _{0}^{t} g( \xi ) x(\xi ) \,d\xi )\) with boundary value conditions \(x(\mu )=\int _{0}^{1} h(z) x(z) \,dz\) and \(x(0)= x^{(j)} (0) = 0\) for \(2 \leq j\leq n-1\), where \(\alpha \geq 2\), \(n = [\alpha ] + 1\), \(\mu , \beta \in (0,1)\), \(g,h:[0,1] \to \mathbb{R}\) are mappings such that \(g, zh \in L^{1}[0,1]\) and \(f\in L^{1}\) is singular at some points \([0,1]\) [30].

By using the main idea of these works, we investigate the existence of solutions for the strong singular fractional differential equation

$$\begin{aligned} D^{\alpha } x(t) = f\bigl(t, x(t), I^{p_{1}}x(t), \ldots, I^{p_{m}}x(t) \bigr), \end{aligned}$$
(1)

with some boundary value conditions, where \(\alpha \geq 1\), \(p_{1},\dots , p_{m}>0\), \(m\geq 1\), \(D^{\alpha }\) is the fractional Caputo derivative of order α and \(f(t,\cdot, \ldots,\cdot) \) is strong singular at some points \([0,1]\).

The Riemann–Liouville integral of order p with the lower limit \(a\geq 0\) for a function \(f:(a,\infty )\to \mathbb{R}\) is defined by \(I^{p}_{a^{+}}f(t)=\frac{1}{\varGamma (p)} \int _{a}^{t} (t-s)^{p-1} f(s)\,ds\) provided that the right-hand side is pointwise define on \((a,\infty )\) [34]. We denote \(I^{p}_{0^{+}}f(t)\) by \(I^{p}f(t)\). The Caputo fractional derivative of order \(\alpha >0\) is defined by \({}^{c}D^{\alpha }f(t)=\frac{1}{\varGamma (n-\alpha )} \int _{0}^{t} \frac{f^{n}(s)}{(t-s)^{\alpha +1-n}}\,ds\), where \(n=[\alpha ]+1\) and \(f:(a,\infty )\to \mathbb{R}\) is a function [34].

Let Ψ be the family of nondecreasing functions \(\psi:[0,\infty ) \to [0,\infty )\) such that \(\sum_{n=1}^{\infty } \psi ^{n}(t)<\infty \) for all \(t> 0\) [35]. One can check that \(\psi (t)< t\) for all \(t>0\) [35]. Let \(T:X \to X\) and \(\alpha:X \times X \to [0,\infty )\) be two maps. Then T is called an α-admissible map whenever \(\alpha (x,y) \geq 1\) implies \(\alpha (Tx,Ty) \geq 1\) [35]. Let \((X,d)\) be a metric space, \(\psi \in \varPsi \), and \(\alpha:X \times X \to [0,\infty )\) be a map. A self-map \(T:X \to X\) is called an α-ψ-contraction whenever \(\alpha (x,y) \,d(Tx,Ty) \leq \psi (d(x,y))\) for all \(x,y \in X\) [35]. We need the next results.

Lemma 1

([35])

Let\((X,d)\)be a complete metric space, \(\psi \in \varPsi \), \(\alpha:X \times X \to [0,\infty )\)be a map, and\(T:X \to X\)be anα-admissibleα-ψ-contraction. IfTis continuous and there exists\(x_{0} \in X\)such that\(\alpha (x_{0}, Tx_{0}) \geq 1\), thenThas a fixed point.

Lemma 2

([34])

Let\(n-1\leq \alpha < n\)and\(x\in C(0,1)\). Then\(I^{\alpha } D^{\alpha }x(t)=x(t)+ \sum_{i=0}^{n-1} c_{i}t^{i}\)for some real constants\(c_{0},\dots ,c_{n-1}\).

Lemma 3

([36])

For all\(z > 0\)and\(\omega >-1\), we have\(\int ^{t}_{0} (t-s)^{\omega - 1} s^{z} \,ds = B(z + 1, \omega ) t^{ \omega + z}\), where\(B(z, \omega ) = \frac{\varGamma (\omega ) \varGamma (z)}{\varGamma (\omega +z)}\).

2 Main results

Now, we are ready for preparing our main results. For the next key result, we use the main idea of [25] to conclude that it is valid on \(L^{1}[0,1]\).

Lemma 4

Let\(\alpha \geq 1\), \([\alpha ] =n-1\), kbe a natural number, \(\mu \in (0,1)\), \(\gamma _{1},\dots ,\gamma _{k} \in (0,1)\), \(\lambda _{1},\dots ,\lambda _{k} \geq 0\)and\(q_{1},\dots ,q_{k} >0\)be such that\(\sum_{i=1}^{k} \frac{\lambda _{i} \gamma _{i}^{q_{i}}}{\varGamma (q_{i} + 1)} <1\)and\(f\in L^{1} [0,1]\). Then the solution of the problem\(D^{\alpha } x(t)=f(t)\)with boundary conditions\(x^{(2)}(0)=\cdots =x^{(n-1)}(0)=0\), \(x(0) = \int _{0}^{1} x(\xi ) \,d\xi \), and\(x(\mu ) =\sum_{i=1}^{k} \lambda _{i} I^{q_{i}}x(\gamma _{i}) \)is\(x(t) = \int _{0}^{1} G(t,s) f(s) \,ds\), where the Green function\(G(t,s)\)is defined by

$$\begin{aligned} G(t,s)= {}& \frac{ (t-s)^{\alpha - 1} }{\varGamma (\alpha )} + \sum_{j=1}^{k} \frac{\lambda _{j} (\gamma _{j} -s)^{\alpha + q_{j} - 1}}{\theta _{q} \varGamma (\alpha + q_{j})} \\ &{}+ \frac{2( \mu - \theta _{q+1} -t \theta _{q} -1)(1-s)^{\alpha }}{\theta _{q} \varGamma (\alpha +1)} - \frac{(\mu -s)^{\alpha - 1}}{\theta _{q}\varGamma (\alpha )}, \end{aligned}$$

whenever\(s \leq \mu \), \(s \leq t\), \(s \leq \gamma _{1} < \cdots < \gamma _{k} <1\),

$$\begin{aligned} G(t,s)= {}& \frac{ (t-s)^{\alpha - 1} }{\varGamma (\alpha )} + \sum_{j=j_{0}}^{k} \frac{\lambda _{j} (\gamma _{j} -s)^{\alpha + q_{j} - 1}}{\theta _{q} \varGamma (\alpha + q_{j})} \\ &{}+ \frac{2( \mu - \theta _{q+1} -t \theta _{q} -1)(1-s)^{\alpha }}{\theta _{q} \varGamma (\alpha +1)} - \frac{(\mu -s)^{\alpha - 1}}{\theta _{q}\varGamma (\alpha )}, \end{aligned}$$

whenever\(s \leq \mu \), \(s \leq t\), \(\gamma _{1} < \gamma _{2} < \cdots \gamma _{j_{0}-1} \leq s \leq \gamma _{j_{0}} < \cdots < \gamma _{k} <1\),

$$\begin{aligned} G(t,s)= {}& \frac{ (t-s)^{\alpha - 1} }{\varGamma (\alpha )} + \sum_{j=j_{0}}^{k} \frac{\lambda _{j} (\gamma _{j} -s)^{\alpha + q_{j} - 1}}{\theta _{q} \varGamma (\alpha + q_{j})} \\ &{}+ \frac{2( \mu - \theta _{q+1} -t \theta _{q} -1)(1-s)^{\alpha }}{\theta _{q} \varGamma (\alpha +1)}, \end{aligned}$$

whenever\(s \geq \mu \), \(s \leq t\), \(\gamma _{1} < \gamma _{2} < \cdots <\gamma _{j_{0}-1} \leq s \leq \gamma _{j_{0}}< \cdots < \gamma _{k} <1\),

$$\begin{aligned} G(t,s)= \frac{ (t-s)^{\alpha - 1} }{\varGamma (\alpha )} + \frac{2( \mu - \theta _{q+1} -t \theta _{q} -1)(1-s)^{\alpha }}{\theta _{q} \varGamma (\alpha +1)}, \end{aligned}$$

whenever\(s \geq \mu \), \(s \leq t\), \(\gamma _{1} < \gamma _{2} < \cdots \gamma _{k} <s<1\),

$$\begin{aligned} G(t,s)= \frac{ (t-s)^{\alpha - 1} }{\varGamma (\alpha )} + \frac{2( \mu - \theta _{q+1} -t \theta _{q} -1)(1-s)^{\alpha }}{\theta _{q} \varGamma (\alpha +1)}, \end{aligned}$$

whenever\(s \geq \mu \), \(s \leq t\), \(\gamma _{1} < \gamma _{2} < \cdots <\gamma _{j_{0}-1} \leq s \leq \gamma _{j_{0}}< \cdots < \gamma _{k} <1\),

$$\begin{aligned} G(t,s)= \sum_{j=j_{0}}^{k} \frac{\lambda _{j} (\gamma _{j} -s)^{\alpha + q_{j} - 1}}{\theta _{q} \varGamma (\alpha + q_{j})} \frac{2( \mu - \theta _{q+1} -t \theta _{q} -1)(1-s)^{\alpha }}{\theta _{q} \varGamma (\alpha +1)}, \end{aligned}$$

whenever\(s \geq \mu \), \(s \geq t\), \(\gamma _{1} < \gamma _{2} < \cdots <\gamma _{j_{0}-1} \leq s \leq \gamma _{j_{0}}< \cdots < \gamma _{k} <1\), and

$$\begin{aligned} G(t,s)= \frac{2( \mu - \theta _{q+1} -t \theta _{q} -1)(1-s)^{\alpha }}{\theta _{q} \varGamma (\alpha +1)}, \end{aligned}$$

whenever\(s \geq \mu \), \(s \geq t\), \(\gamma _{1} < \gamma _{2} < \cdots < \gamma _{k} < s <1\). Here, \(\theta _{q+1}:= 1- \sum_{i=1}^{k} \frac{\lambda _{i} \gamma _{i}^{q_{i}+ 1}}{\varGamma (q_{i} + 2)}\)and\(\theta _{q}:= 1- \sum_{i=1}^{k} \frac{\lambda _{i} \gamma _{i}^{q_{i}}}{\varGamma (q_{i} + 1)}\).

Proof

Let x be a solution for the problem. By using Lemma 2, we have

$$\begin{aligned} x(t)= \frac{1}{\varGamma (\alpha )} \int ^{t}_{0} (t-s)^{\alpha - 1} f(s) \,ds +c_{0} + c_{1} t + \cdots+ c_{n} t^{n} \end{aligned}$$

for some real constants \(c_{0},\dots ,c_{n}\). Since \(x^{(2)}(0)=\cdots =x^{(n-1)}(0)=0\), we get \(c_{2}= \cdots= c_{n} =0\), and so \(x(t)= \frac{1}{\varGamma (\alpha )} \int ^{t}_{0} (t-s)^{\alpha - 1} f(s) \,ds + c_{0} +c_{1} t\). Thus, \(x(0)=c_{0}\) and

$$\begin{aligned} \int _{0}^{1} x(t)&= \frac{1}{\varGamma (\alpha )} \int _{0}^{1} \int ^{t}_{0} (t-s)^{\alpha - 1} f(s) \,ds + c_{0} +\frac{c_{1}}{2} \\ &= \frac{1}{\varGamma (\alpha +1)} \int _{0}^{1} (1-s)^{\alpha } f(s) \,ds + c_{0} +\frac{c_{1}}{2}. \end{aligned}$$

Now, by using the condition \(x(0)= \int _{0}^{1} x(\xi ) \,d\xi \), we obtain \(\frac{1}{\varGamma (\alpha +1)} \int _{0}^{1} (t-s)^{\alpha } f(s) \,ds + c_{0} +\frac{c_{1}}{2}= c_{0}\), and so \(c_{1}= \frac{-2}{\varGamma (\alpha +1)} \int _{0}^{1} (1-s)^{\alpha } f(s) \,ds\). Hence,

$$\begin{aligned} x(t)= \frac{1}{\varGamma (\alpha )} \int ^{t}_{0} (t-s)^{\alpha - 1} f(s) \,ds +c_{0} -\frac{2t}{\varGamma (\alpha +1)} \int _{0}^{1} (1-s)^{\alpha } f(s) \,ds, \end{aligned}$$
(2)

and so \(x(\mu )= \frac{1}{\varGamma (\alpha )} \int ^{\mu }_{0} (\mu -s)^{ \alpha - 1} f(s) \,ds +c_{0} -\frac{2 \mu }{\varGamma (\alpha +1)} \int _{0}^{1} (1-s)^{\alpha } f(s) \,ds\). On the other hand, we have \(I^{q_{i}}(t)= \frac{1}{\varGamma (q_{i})} \int _{0}^{t} (t-s)^{q_{i} - 1} \,ds = \frac{t^{q_{i}}}{\varGamma (q_{i} + 1)}\) for all \(1 \leq i \leq k\). By using Lemma 3, we get \(I^{q_{i}}(t)=\frac{1}{\varGamma (q_{i})} \int _{0}^{t} t(t-s)^{q_{i} - 1} \,ds = \frac{1}{\varGamma (q_{i} )} B(2, q_{i}) t^{2+ q_{i} -1} = \frac{1}{\varGamma (q_{i} )}. \frac{\varGamma (2) \varGamma (q_{i})}{\varGamma (2 + q_{i})} t^{ q_{i} +1} = \frac{t^{ q_{i} +1}}{\varGamma (2 + q_{i} )}\). Since \(I^{q_{i}} I^{\alpha } f(t) = I^{q_{i} + \alpha } f(t)\), by using (2) we obtain

$$\begin{aligned} I^{q_{i}}x(t) ={}& \frac{1}{\varGamma (\alpha + q_{i})} \int _{0}^{t} (t-s)^{ \alpha + q_{i} - 1} f(s)\,ds + c_{0} \frac{t^{q_{i}}}{\varGamma (q_{i} + 1)} \\ & {} - \frac{2 t^{q_{i} + 1}}{\varGamma (\alpha +1) \varGamma (q_{i} +2)} \int _{0}^{1} (1-s)^{\alpha } f(s) \,ds. \end{aligned}$$

Hence,

$$\begin{aligned} \lambda _{i} I^{q_{i}}x(\gamma _{i})={}& \frac{\lambda _{i}}{\varGamma (\alpha + q_{i})} \int _{0}^{\gamma _{i} }( \gamma _{i} -s)^{\alpha + q_{i} - 1} f(s)\,ds + \frac{\lambda _{i} c_{0} \gamma _{i}^{q_{i}}}{\varGamma (q_{i} + 1)} \\ &{}- \frac{2 \lambda _{i} \gamma _{i}^{q_{i} + 1}}{\varGamma (\alpha +1) \varGamma (q_{i} +2)} \int _{0}^{1} (1-s)^{\alpha } f(s) \,ds \end{aligned}$$

for all \(1 \leq i \leq k\), and so

$$\begin{aligned} \sum_{i=1}^{k} \lambda _{i} I^{q_{i}}x(\gamma _{i}) ={}&\sum_{i=1}^{k} \frac{\lambda _{i}}{\varGamma (\alpha + q_{i})} \int _{0}^{\gamma _{i} }( \gamma _{i} -s)^{\alpha + q_{i} - 1} f(s)\,ds \\ &{} + c_{0} \sum_{i=1}^{k} \frac{\lambda _{i} \gamma _{i}^{q_{i}}}{\varGamma (q_{i} + 1)}- \frac{2}{\varGamma (\alpha +1)}\sum_{i=1}^{k} \frac{ \lambda _{i} \gamma _{i}^{q_{i} + 1}}{ \varGamma (q_{i} +2)} \int _{0}^{1} (1-s)^{\alpha } f(s) \,ds. \end{aligned}$$

Since \(x(\mu )=\sum_{i=1}^{k} \lambda _{i} I^{q_{i}}x(\gamma _{i})\), we get

$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int ^{\mu }_{0} (\mu -s)^{\alpha - 1} f(s) \,ds +c_{0} -\frac{2 \mu }{\varGamma (\alpha +1)} \int _{0}^{1} (1-s)^{\alpha } f(s) \,ds \\ &\quad =\sum_{i=1}^{k} \frac{\lambda _{i}}{\varGamma (\alpha + q_{i})} \int _{0}^{ \gamma _{i} }(\gamma _{i} -s)^{\alpha + q_{i} - 1} f(s)\,ds + c_{0} \sum_{i=1}^{k} \frac{\lambda _{i} \gamma _{i}^{q_{i}}}{\varGamma (q_{i} + 1)} \\ &\qquad{}- \frac{2}{\varGamma (\alpha +1)}\sum_{i=1}^{k} \frac{ \lambda _{i} \gamma _{i}^{q_{i} + 1}}{ \varGamma (q_{i} +2)} \int _{0}^{1} (1-s)^{\alpha } f(s) \,ds, \end{aligned}$$

and so

$$\begin{aligned} c_{0} ={}&\sum_{i=1}^{k} \frac{\lambda _{i}}{\theta _{q} \varGamma (\alpha + q_{i})} \int _{0}^{ \gamma _{i} }(\gamma _{i} -s)^{\alpha + q_{i} - 1} f(s)\,ds + \frac{2 \mu }{\varGamma (\alpha +1)} \int _{0}^{1} (1-s)^{\alpha } f(s) \,ds \\ &{}-\frac{1}{\theta _{q}\varGamma (\alpha )} \int ^{\mu }_{0} (\mu -s)^{ \alpha - 1} f(s) \,ds - \frac{2}{\theta _{q} \varGamma (\alpha +1)}\sum_{i=1}^{k} \frac{ \lambda _{i} \gamma _{i}^{q_{i} + 1}}{ \varGamma (q_{i} +2)} \int _{0}^{1} (1-s)^{\alpha } f(s) \,ds, \end{aligned}$$

where \(\theta _{q}:= 1- \sum_{i=1}^{k} \frac{\lambda _{i} \gamma _{i}^{q_{i}}}{\varGamma (q_{i} + 1)}\) and \(\theta _{q+1}:= 1- \sum_{i=1}^{k} \frac{\lambda _{i} \gamma _{i}^{q_{i}+ 1}}{\varGamma (q_{i} + 2)}\). Thus,

$$\begin{aligned} x(t)={} & \frac{1}{\varGamma (\alpha )} \int ^{t}_{0} (t-s)^{\alpha - 1} f(s) \,ds \\ &{}+\sum_{i=1}^{k} \frac{\lambda _{i}}{\theta _{q} \varGamma (\alpha + q_{i})} \int _{0}^{ \gamma _{i} }(\gamma _{i} -s)^{\alpha + q_{i} - 1} f(s)\,ds \\ &{}+ \frac{2 \mu }{\varGamma (\alpha +1)} \int _{0}^{1} (1-s)^{\alpha } f(s) \,ds \\ &{}-\frac{1}{\theta _{q}\varGamma (\alpha )} \int ^{\mu }_{0} (\mu -s)^{ \alpha - 1} f(s) \,ds \\ &{} - \frac{2}{\theta _{q} \varGamma (\alpha +1)}\sum_{i=1}^{k} \frac{ \lambda _{i} \gamma _{i}^{q_{i} + 1}}{ \varGamma (q_{i} +2)} \int _{0}^{1} (1-s)^{\alpha } f(s) \,ds \\ &{}- \frac{2t}{\varGamma (\alpha +1)} \int _{0}^{1} (1-s)^{\alpha } f(s) \,ds \end{aligned}$$

or

$$\begin{aligned} x(t)= {}& \frac{1}{\varGamma (\alpha )} \int ^{t}_{0} (t-s)^{\alpha - 1} f(s) \,ds \\ &{} + \frac{\lambda _{1}}{\theta _{q} \varGamma (\alpha + q_{1})} \int _{0}^{ \gamma _{1} }(\gamma _{1} -s)^{\alpha + q_{1} - 1} f(s)\,ds \\ &{}+ \frac{\lambda _{2}}{\theta _{q} \varGamma (\alpha + q_{2})} \int _{0}^{ \gamma _{2} }(\gamma _{2} -s)^{\alpha + q_{2} - 1} f(s)\,ds \\ &{}+\dots + \frac{\lambda _{k}}{\theta _{q} \varGamma (\alpha + q_{k})} \int _{0}^{\gamma _{k} }(\gamma _{k} -s)^{\alpha + q_{k} - 1} f(s)\,ds \\ &{}+ \frac{2( \mu - \theta _{q+1} -t \theta _{q} -1)}{\theta _{q} \varGamma (\alpha +1)} \int _{0}^{1} (1-s)^{\alpha } f(s) \,ds \\ &{}-\frac{1}{\theta _{q}\varGamma (\alpha )} \int ^{\mu }_{0} (\mu -s)^{ \alpha - 1} f(s) \,ds = \int _{0}^{1} G(t,s) f(s), \end{aligned}$$

where \(G(t,s)\) is the Green function. This completes the proof. □

Note that in the last result, it remains only the boundary value conditions \(x(0) = \int _{0}^{1} x(\xi ) \,d\xi \) and \(x(\mu ) =\sum_{i=1}^{k} \lambda _{i} I^{q_{i}}x(\gamma _{i}) \) whenever \(1\leq \alpha <2\). It is easy to see

$$\begin{aligned} \bigl\vert G(t,s) \bigr\vert \leq{} & \frac{ (t-s)^{\alpha - 1} }{\varGamma (\alpha )} + \sum _{j=1}^{k} \frac{\lambda _{j} (\gamma _{j} -s)^{\alpha + q_{j} - 1}}{\theta _{q} \varGamma (\alpha + q_{j})} \\ &{}+ \frac{2 \vert \mu - \theta _{q+1} -t \theta _{q} -1 \vert (1-s)^{\alpha }}{\theta _{q} \varGamma (\alpha +1)} + \frac{(\mu -s)^{\alpha - 1}}{\theta _{q}\varGamma (\alpha )} \end{aligned}$$

and G is continuous with respect to t. Consider the Banach space \(X= C[0,1]\) with the sup norm. Let \(g:[0,1]\times X^{m+1}\to \mathbb{R}\) be singular at the points \(\gamma _{1}< \gamma _{2} <\cdots< \gamma _{k}\) in \([0,1]\). Define the map \(F:X \to X\) by

$$\begin{aligned} Fx(t) ={}& \int _{0}^{1} G(t,s) g\bigl(s, x(s), I^{p_{1}}x(s), \ldots, I^{p_{m}}x(s) \bigr) \,ds \\ ={}& \frac{1}{\varGamma (\alpha )} \int _{0}^{t} (t-s)^{\alpha -1} g\bigl(s, x(s), I^{p_{1}}x(s), \ldots, I^{p_{m}}x(s) \bigr) \,ds \\ &{} + \sum_{j=1}^{k} \frac{\lambda _{j}}{\theta _{q} \varGamma (\alpha + q_{j})} \int _{0}^{ \gamma _{j}} (\gamma _{j} -s)^{\alpha + q_{j} - 1} g\bigl(s, x(s), I^{p_{1}}x(s), \ldots, I^{p_{m}}x(s) \bigr) \,ds \\ &{}+ \frac{2( \mu - \theta _{q+1} -t \theta _{q} -1)}{\theta _{q} \varGamma (\alpha +1)} \int _{0}^{1} (1-s)^{\alpha } g\bigl(s, x(s), I^{p_{1}}x(s), \ldots, I^{p_{m}}x(s) \bigr) \,ds \\ &{} -\frac{1}{\theta _{q}\varGamma (\alpha )} \int _{0}^{\mu } (\mu -s)^{ \alpha - 1} f\bigl(s, x(s), I^{p_{1}}x(s), \ldots, I^{p_{m}}x(s) \bigr) \,ds. \end{aligned}$$

Let \(0 = t_{0} < t_{1} < \cdots < t_{r-1} < t_{r} = 1\) and \(f(s,\cdot, \ldots,\cdot)\) is singular at each \(t_{i}\) for \(1 \leq i \leq r\). Put \(n_{0} = [ \frac{2}{\min_{0 \leq i \leq r} (t_{i+1} - t_{i})} ] + 1\). For \(n \geq n_{0}\), define \(F^{n}: X \to X\) by

$$\begin{aligned} F^{n}x(t) ={}& \sum_{i=0}^{r-1} \int _{t_{i} + \frac{1}{n}}^{t_{i+1} - \frac{1}{n}} G(t,s) f\bigl(s, x(s), I^{p_{1}}x(s), \ldots, I^{p_{m}}x(s) \bigr) \,ds \\ ={}& \frac{1}{\varGamma (\alpha )} \sum_{i=0}^{r-1} \int _{[0,t] \cap [t_{i} + \frac{1}{n}, t_{i+1} - \frac{1}{n}]} (t-s)^{\alpha -1} f\bigl(s, x(s), I^{p_{1}}x(s), \ldots, I^{p_{m}}x(s) \bigr) \,ds \\ &{} + \sum_{j=1}^{k} \frac{\lambda _{j}}{\theta _{q} \varGamma (\alpha + q_{j})} \\ & {}\times \Biggl( \sum_{i=0}^{r-1} \int _{[0,\gamma _{j} ] \cap [t_{i} + \frac{1}{n}, t_{i+1} - \frac{1}{n}]} (\gamma _{j} -s)^{\alpha + q_{j} - 1} f\bigl(s, x(s), I^{p_{1}}x(s), \ldots, I^{p_{m}}x(s) \bigr) \,ds \Biggr) \\ &{}+ \frac{2( \mu - \theta _{q+1} -t \theta _{q} -1)}{\theta _{q} \varGamma (\alpha +1)} \\ & {}\times\sum_{i=0}^{r-1} \int _{[t_{i} + \frac{1}{n}, t_{i+1} - \frac{1}{n}]} (1-s)^{\alpha } f\bigl(s, x(s), I^{p_{1}}x(s), \ldots, I^{p_{m}}x(s) \bigr) \,ds \\ & {}- \frac{1}{\theta _{q}\varGamma (\alpha )} \\ &{}\times \sum_{i=0}^{r-1} \int _{[0, \mu ] \cap [t_{i} + \frac{1}{n}, t_{i+1} - \frac{1}{n}]} (\mu -s)^{\alpha - 1} f\bigl(s, x(s), I^{p_{1}}x(s), \ldots, I^{p_{m}}x(s) \bigr) \,ds. \end{aligned}$$
(3)

Note that each fixed point of F is a solution for problem (1).

Theorem 5

Assume that\(\alpha \geq 1\), \([\alpha ] =n-1\), \(r,k,m\geq 1\), \(\mu \in (0,1)\), \(\gamma _{1},\dots ,\gamma _{k} \in (0,1)\), \(\lambda _{1},\dots ,\lambda _{k} \geq 0\), \(q_{1},\dots ,q_{k} >0\), \(p_{1},\dots ,p_{m} >0\), \(a_{1},\dots.a_{m+1}\), and\(\varLambda _{1},\dots , \varLambda _{m+1}: \mathbb{R} \to [0, \infty )\)are some functions such that\(\hat{a}_{i}(t)=(1-t)^{\alpha -1} a_{i}(t) \in L^{1}(K_{j})\)for every compact subset\(K_{j} \subseteq (t_{j}, t_{j+1})\)for\(i=1,\dots ,m+1\)and\(j=1,\dots ,r-1\), \(\lim_{z \to 0^{+}} \frac{\varLambda _{i}(z)}{z}=B_{i} \geq 0\), and we have\(|f(t, x_{1}, \ldots, x_{m+1}) - f(t, y_{1}, \ldots, y_{m+1})| \leq \sum_{i=1}^{m+1} a_{i}(t) \varLambda _{i}( |x_{i} - y_{i}|)\)for all\((x_{1}, \ldots, x_{m+1})\)and\((y_{1}, \ldots, y_{m+1})\)in\(X^{m+1}\)and almost all\(t \in [0,1]\). Suppose that

$$\begin{aligned} \Delta \sum_{i=0}^{r-1} \Biggl( \Biggl[ \frac{ 1}{\varGamma (\alpha )} + \sum_{j=1}^{k} \frac{\lambda _{j} }{\theta _{q} \varGamma (\alpha + q_{j})} + \frac{2( \theta _{q+1} - \mu +1)}{\theta _{q} \varGamma (\alpha +1)} + \frac{1}{\theta _{q}\varGamma (\alpha )} \Biggr] \sum _{j^{\prime }=1}^{m+1} B_{j'} \Vert \hat{a}_{j',i,n} \Vert \Biggr) < 1, \end{aligned}$$

where\(\|\hat{a}_{j',i,n} \|:= \int _{t_{i} + \frac{1}{n}}^{t_{i+1} - \frac{1}{n}} (1-s)^{\alpha - 1} a_{j'}(s) \,ds\)and\(\Delta:= \max \{ 1, \frac{1}{\varGamma ( p_{1} +1)}, \ldots , \frac{1}{\varGamma ( p_{m} +1)} \} \). Assume that there are two mapsband\(N: X^{m+1} \to [0, \infty )\)such that\((1-t)^{\alpha -1} b(t) \in L^{1}(K_{j})\)for every compact subset\(K_{j} \subseteq (t_{j}, t_{j+1})\)for\(j=1,\dots ,r-1\)andNis nondecreasing with respect to all its components and\(\lim_{z \to 0^{+}} \frac{N(z, \ldots, z)}{z}=\eta \geq 0\). Suppose that\(|f(t, x_{1}, \ldots, x_{m+1}) | \leq b(t) N( x_{1}, \ldots, x_{m+1})\)for all\((x_{1}, \ldots, x_{m+1}) \in X^{m+1}\)and almost all\(t \in [0,1]\). If

$$\begin{aligned} \eta \sum_{i=0}^{r-1} \Vert \hat{b}_{i,n} \Vert \Biggl[ \frac{ 1}{\varGamma (\alpha )} + \sum _{j=1}^{k} \frac{\lambda _{j} }{\theta _{q} \varGamma (\alpha + q_{j})} + \frac{2( \theta _{q+1} - \mu +1)}{\theta _{q} \varGamma (\alpha +1)} + \frac{1}{\theta _{q}\varGamma (\alpha )} \Biggr] \in \biggl[0, \frac{1}{\Delta }\biggr), \end{aligned}$$

then the singular problem (1) has a solution.

Proof

Let \(x, y \in X\) and \(t \in [0, 1]\). Then we have

$$\begin{aligned} & \bigl\vert F^{n}x(t)- F^{n}y(t) \bigr\vert \\ &\quad \leq \sum_{i=0}^{r-1} \int _{t_{i} + \frac{1}{n}}^{t_{i+1} - \frac{1}{n}} \bigl\vert G(t,s) \bigr\vert \bigl\vert f\bigl(s, x(s), I^{p_{1}}x(s), \ldots, I^{p_{m}}x(s) \bigr) \\ & \qquad{} - f\bigl(s, x(s), I^{p_{1}}x(s), \ldots, I^{p_{m}}x(s) \bigr) \bigr\vert \,ds \\ & \quad\leq \Biggl\vert \sum_{i=0}^{r-1} \int _{t_{i} + \frac{1}{n}}^{t_{i+1} - \frac{1}{n}} \Biggr\vert G(t,s)| \bigl[ a_{1}(s) \varLambda _{1}\bigl( \bigl\vert x(s) - y(s) \bigr\vert \bigr) + a_{2}(s) \varLambda _{2}\bigl( \bigl\vert I^{p_{1}}\bigl(x(s) - y(s)\bigr) \bigr\vert \bigr) \\ &\qquad{} + \cdots + a_{m+1}(s) \varLambda _{m+1}\bigl( \bigl\vert I^{p_{m}}\bigl(x(s) - y(s)\bigr) \bigr\vert \bigr) \bigr] \,ds. \end{aligned}$$

For \(1 \leq i \leq m\) and \(t \in [0,1]\), we obtain

$$\begin{aligned} \bigl\vert I^{p_{i}}x(t) \bigr\vert \leq \frac{1}{p_{i}} \int _{0}^{t} (t-s)^{p_{i} -1} \bigl\vert x(s) \bigr\vert \,ds \leq \frac{ \Vert x \Vert }{p_{i}} \int _{0}^{t} (t-s)^{p_{i} -1} \,ds = \frac{ \Vert x \Vert }{\varGamma ( p_{i} +1)} t^{p_{i}}, \end{aligned}$$

and so \(|I^{p_{i}}x(t) | \leq \frac{\|x\|}{p_{i} +1}\). Hence,

$$\begin{aligned} & \bigl\vert F^{n}x(t)- F^{n}y(t) \bigr\vert \\ &\quad \leq \sum_{i=0}^{r-1} \int _{t_{i} + \frac{1}{n}}^{t_{i+1} - \frac{1}{n}} \bigl\vert G(t,s) \bigr\vert \biggl[ a_{1}(s) \varLambda _{1}\bigl( \Vert x - y \Vert \bigr) + a_{2}(s) \varLambda _{2}\biggl(\frac{ \Vert x - y \Vert }{\varGamma ( p_{1} +1)} \biggr) \\ &\qquad{} + \cdots + a_{m+1}(s) \varLambda _{m+1}\biggl( \frac{ \Vert x - y \Vert }{\varGamma ( p_{m} +1)} \biggr) \biggr] \,ds. \end{aligned}$$

Since \(\Delta:= \max \{ 1, \frac{1}{\varGamma ( p_{1} +1)}, \ldots , \frac{1}{\varGamma ( p_{m} +1)} \} \), we get

$$\begin{aligned} \bigl\vert F^{n}x(t)- F^{n}y(t) \bigr\vert \leq \sum _{i=0}^{r-1} \Biggl( \int _{t_{i} + \frac{1}{n}}^{t_{i+1} - \frac{1}{n}} \bigl\vert G(t,s) \bigr\vert \Biggl[\sum_{j=1}^{m+1} a_{j}(s) \varLambda _{j}\bigl(\Delta \Vert x - y \Vert \bigr) \Biggr] \,ds \Biggr). \end{aligned}$$
(4)

Let \(\epsilon >0\) be given. Since \(\lim_{z \to 0^{+}} \frac{\varLambda _{j}(z)}{z}=B_{j}\) for all \(1 \leq j \leq m+1\), there exists \(\delta (\epsilon ) >0 \) such that \(|z| \leq \delta '\) implies \(|\frac{\varLambda _{j}(z)}{z} - B_{j} | \leq \epsilon \), where \(\delta ' \leq \delta (\epsilon )\). Thus, \(\varLambda _{j}(z) \leq (\epsilon + B_{j}) z\) for all \(|z| \leq \delta '\). Let \(\delta '_{0}:= \min \{ \epsilon , \delta (\epsilon ) \}\) and \(|z| \leq \delta '_{0}\). Then we have \(\varLambda _{j}(z) \leq (\epsilon + B_{j}) z\) for all \(1 \leq j \leq m+1\). If \(\Delta \|x - y \| \leq \delta '_{0}\), then \(\varLambda _{j}(\Delta \|x - y \| ) \leq (\epsilon + B_{j}) \Delta \|x - y \| \leq (\epsilon + B_{j}) \delta '_{0} \leq (\epsilon + B_{j}) \epsilon \) for all \(1 \leq j \leq m+1\). Also, \(\Delta \|x - y \| \leq \delta '_{0}\) implies \(\|x - y \| \leq \frac{\epsilon }{\Delta }\). Let \(t \in [0,1]\). By using (4), we conclude that

$$\begin{aligned} &\bigl\vert F^{n}x(t)- F^{n}y(t) \bigr\vert \\ &\quad \leq \sum_{i=0}^{r-1} \Biggl( \int _{t_{i} + \frac{1}{n}}^{t_{i+1} - \frac{1}{n}} \Biggl[ \frac{ (1-s)^{\alpha - 1} }{\varGamma (\alpha )} + \sum _{j=1}^{k} \frac{\lambda _{j} (1 -s)^{\alpha + q_{j} - 1}}{\theta _{q} \varGamma (\alpha + q_{j})} \\ &\qquad{}+ \frac{2 \vert \mu - \theta _{q+1} -t \theta _{q} -1 \vert (1-s)^{\alpha }}{\theta _{q} \varGamma (\alpha +1)} + \frac{(1 -s)^{\alpha - 1}}{\theta _{q}\varGamma (\alpha )} \Biggr] \times \Biggl[ \sum _{j^{\prime }=1}^{m+1} a_{j'}(s) (\epsilon + B_{j'}) \Biggr] \,ds\Biggr) \epsilon \\ &\quad \leq \epsilon \sum_{j^{\prime }=1}^{m+1} \epsilon + B_{j'} \Biggl( \sum_{i=0}^{r-1} \Biggl( \Biggl[ \frac{ 1}{\varGamma (\alpha )} + \sum_{j=1}^{k} \frac{\lambda _{j} }{\theta _{q} \varGamma (\alpha + q_{j})} \\ &\qquad{}+ \frac{2 \vert \mu - \theta _{q+1} -t \theta _{q} -1 \vert }{\theta _{q} \varGamma (\alpha +1)} + \frac{1}{\theta _{q}\varGamma (\alpha )} \Biggr] \times \biggl[ \int _{t_{i} + \frac{1}{n}}^{t_{i+1} - \frac{1}{n}} (1-s)^{\alpha - 1} a_{j'}(s) \biggr] \,ds\Biggr) \Biggr). \end{aligned}$$

If \(\|\hat{a}_{j',i,n} \|:= \int _{t_{i} + \frac{1}{n}}^{t_{i+1} - \frac{1}{n}} (1-s)^{\alpha - 1} a_{j'}(s) \,ds\), then

$$\begin{aligned} \bigl\vert F^{n}x(t)- F^{n}y(t) \bigr\vert \leq{}& \epsilon \sum_{i=0}^{r-1} \Biggl( \Biggl[ \frac{ 1}{\varGamma (\alpha )} + \sum_{j=1}^{k} \frac{\lambda _{j} }{\theta _{q} \varGamma (\alpha + q_{j})} \\ &{}+ \frac{2 \vert \mu - \theta _{q+1} -t \theta _{q} -1 \vert }{\theta _{q} \varGamma (\alpha +1)} + \frac{1}{\theta _{q}\varGamma (\alpha )} \Biggr] \sum _{j^{\prime }=1}^{m+1} ( \epsilon + B_{j'}) \Vert \hat{a}_{j',i,n} \Vert \Biggr). \end{aligned}$$

Since \(1 - \sum_{i=1}^{k} \frac{\lambda _{i} \gamma _{i}^{q_{i} +1}}{ \varGamma ( q_{i} + 2)} > 1 - \sum_{i=1}^{k} \frac{\lambda _{i} \gamma _{i}^{q_{i} }}{ \varGamma ( q_{i} +1)}\), \(\theta _{q+1} > \theta _{q} \geq t \theta _{q} >0\) for all \(t \in [0,1]\), and so

$$ \sup_{t \in [0,1]} \vert \mu - \theta _{q+1} -t \theta _{q} -1 \vert \leq \sup_{t \in [0,1]} \bigl( \vert \mu - 1 \vert + \vert \theta _{q+1} -t \theta _{q} \vert \bigr) = 1 - \mu + \theta _{q+1}. $$

Thus, we find

$$\begin{aligned} \bigl\Vert F^{n}x- F^{n}y \bigr\Vert \leq{}& \epsilon \sum_{i=0}^{r-1} \Biggl( \Biggl[ \frac{ 1}{\varGamma (\alpha )} + \sum_{j=1}^{k} \frac{\lambda _{j} }{\theta _{q} \varGamma (\alpha + q_{j})} \\ &{}+ \frac{2( \theta _{q+1} - \mu +1)}{\theta _{q} \varGamma (\alpha +1)} + \frac{1}{\theta _{q}\varGamma (\alpha )} \Biggr] \sum _{j^{\prime }=1}^{m+1} ( \epsilon + B_{j'}) \Vert \hat{a}_{j',i,n} \Vert \Biggr), \end{aligned}$$

and so \(\| F^{n}x- F^{n}y \| \leq \epsilon M_{n}\), where

$$\begin{aligned} M_{n} ={}& \sum_{i=0}^{r-1} \Biggl( \Biggl[ \frac{ 1}{\varGamma (\alpha )} + \sum_{j=1}^{k} \frac{\lambda _{j} }{\theta _{q} \varGamma (\alpha + q_{j})} \\ &{}+ \frac{2( \theta _{q+1} - \mu +1)}{\theta _{q} \varGamma (\alpha +1)} + \frac{1}{\theta _{q}\varGamma (\alpha )} \Biggr] \sum _{j^{\prime }=1}^{m+1} ( \epsilon + B_{j'}) \Vert \hat{a}_{j',i,n} \Vert \Biggr). \end{aligned}$$

Since \(\epsilon >0\) was arbitrary, \(F^{n}x \to F^{n}y\) as \(x \to y\) for all \(n \geq n_{0}\). Thus, \(F^{n}\) is continuous. Since \(\lim_{z \to 0^{+}} \frac{N(\Delta z,\ldots,\Delta z)}{\Delta z}=\eta \), there exists \(r(\epsilon ) >0\) such that \(\frac{N(\Delta z,\ldots,\Delta z)}{\Delta z} \leq \eta + \epsilon \) for all \(z \in (0, r(\epsilon )]\), and so \(N(\Delta z,\ldots,\Delta z) \leq (\eta + \epsilon ) \Delta z\). Since

$$\begin{aligned} \eta \sum_{i=0}^{r-1} \Vert \hat{b}_{i,n} \Vert \Biggl[ \frac{ 1}{\varGamma (\alpha )} + \sum _{j=1}^{k} \frac{\lambda _{j} }{\theta _{q} \varGamma (\alpha + q_{j})} + \frac{2( \theta _{q+1} - \mu +1)}{\theta _{q} \varGamma (\alpha +1)} + \frac{1}{\theta _{q}\varGamma (\alpha )} \Biggr] \in \biggl[0,\frac{1}{\Delta }\biggr), \end{aligned}$$

there is \(\epsilon _{0} >0\) such that

$$\begin{aligned} (\eta + \epsilon _{0}) \sum_{i=0}^{r-1} \Vert \hat{b}_{i,n} \Vert \Biggl[ \frac{ 1}{\varGamma (\alpha )} + \sum _{j=1}^{k} \frac{\lambda _{j} }{\theta _{q} \varGamma (\alpha + q_{j})} + \frac{2( \theta _{q+1} - \mu +1)}{\theta _{q} \varGamma (\alpha +1)} + \frac{1}{\theta _{q}\varGamma (\alpha )} \Biggr] \in \biggl[0,\frac{1}{\Delta }\biggr). \end{aligned}$$

On the other hand, we have \(\lim_{z \to 0^{+}} \frac{\varLambda _{j'}(\Delta z)}{\Delta z}= B_{j'} \geq 0\) for all \(1 \leq j' \leq m+1\). Let \(\epsilon >0\) be given. Choose \(\delta (\epsilon ) >0\) such that \(\frac{\varLambda _{j'}(\Delta z)}{\Delta z} < B_{j'} + \epsilon \) for all \(0 \leq z \leq \delta (\epsilon )\). Hence, \(\varLambda _{j'}(\Delta z) < (B_{j'} + \epsilon ) \Delta z\) for \(1 \leq j' \leq m+1\). Since

$$\begin{aligned} \Delta \sum_{i=0}^{r-1} \Biggl( \Biggl[ \frac{ 1}{\varGamma (\alpha )} + \sum_{j=1}^{k} \frac{\lambda _{j} }{\theta _{q} \varGamma (\alpha + q_{j})} + \frac{2( \theta _{q+1} - \mu +1)}{\theta _{q} \varGamma (\alpha +1)} + \frac{1}{\theta _{q}\varGamma (\alpha )} \Biggr] \sum _{j^{\prime }=1}^{m+1} B_{j'} \Vert \hat{a}_{j',i,n} \Vert \Biggr) < 1, \end{aligned}$$

there is \(\epsilon _{1}> 0\) such that

$$\begin{aligned} &\Delta \sum_{i=0}^{r-1} \Biggl( \Biggl[ \frac{ 1}{\varGamma (\alpha )} + \sum_{j=1}^{k} \frac{\lambda _{j} }{\theta _{q} \varGamma (\alpha + q_{j})} + \frac{2( \theta _{q+1} - \mu +1)}{\theta _{q} \varGamma (\alpha +1)} + \frac{1}{\theta _{q}\varGamma (\alpha )} \Biggr] \sum _{j^{\prime }=1}^{m+1} (B_{j'} + \epsilon _{1}) \Vert \hat{a}_{j',i,n} \Vert \Biggr) \\ &\quad < 1. \end{aligned}$$

Let \(\delta _{1} = \delta (\epsilon _{1})\), \(z \in (0, \delta _{1}]\) and \(1 \leq j' \leq m+1\). Then we have

$$\begin{aligned} \varLambda _{j'}(\Delta z) \leq (B_{j'} + \epsilon _{1}) \Delta z. \end{aligned}$$
(5)

If \(r_{0} = \min \{ r(\epsilon _{0}), \frac{\delta _{1}}{2} \}\), then \(N(\Delta z, \ldots, \Delta z) \leq (\eta + \epsilon _{0}) \Delta z\) for all \(z \in (o, r_{0}]\). Specially for \(z = r_{0}\), we have \(N(\Delta r_{0}, \ldots, \Delta r_{0}) \leq (\eta + \epsilon _{0}) \Delta r_{0}\). Put \(C= \{ x \in X: \|x\| \leq r_{0} \}\). Define the map \(\alpha: X^{2} \to [0, \infty )\) by \(\alpha (x,y) = 1\) whenever \(x,y \in C\) and \(\alpha (x,y)=0\) elsewhere. If \(\alpha (x,y) \geq 1\), then \(\|x\| \leq r_{0}\) and \(\|y\| \leq r_{0}\), and so

$$\begin{aligned} & \bigl\vert F^{n}x(t) \bigr\vert \\ &\quad \leq \Biggl\vert \sum _{i=0}^{r-1} \int _{t_{i} + \frac{1}{n}}^{t_{i+1} - \frac{1}{n}} G(t,s) f\bigl(s, x(s), I^{p_{1}}x(s), \ldots, I^{p_{m}}x(s) \bigr) \,ds \Biggr\vert \\ &\quad \leq \frac{1}{\varGamma (\alpha )} \sum_{i=0}^{r-1} \int _{[0,t] \cap [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (t-s)^{\alpha -1} \bigl\vert f\bigl(s, x(s), I^{p_{1}}x(s), \ldots, I^{p_{m}}x(s) \bigr) \bigr\vert \,ds \\ &\qquad{}+ \sum_{j=1}^{k} \frac{\lambda _{j}}{\theta _{q} \varGamma (\alpha + q_{j})} \Biggl( \sum_{i=0}^{r-1} \biggl( \int _{[0,\gamma _{j}] \cap [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (\gamma _{j} -s)^{\alpha + q_{j} - 1} \\ &\qquad{} \times \bigl\vert f\bigl(s, x(s), I^{p_{1}}x(s), \ldots, I^{p_{m}}x(s) \bigr) \bigr\vert \,ds\biggr) \Biggr) \\ &\qquad{}+ \frac{2 \vert \mu - \theta _{q+1} -t \theta _{q} -1 \vert }{\theta _{q} \varGamma (\alpha +1)} \sum_{i=0}^{r-1} \int _{ [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (1-s)^{\alpha } \\ & \qquad{} \times\bigl\vert f\bigl(s, x(s), I^{p_{1}}x(s), \ldots, I^{p_{m}}x(s) \bigr) \bigr\vert \,ds \\ &\qquad{}+ \frac{1}{\theta _{q} \varGamma (\alpha )} \sum_{i=0}^{r-1} \int _{[0, \mu ] \cap [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (\mu -s)^{ \alpha } \\ & {}\qquad \times\bigl\vert f\bigl(s, x(s), I^{p_{1}}x(s), \ldots, I^{p_{m}}x(s) \bigr) \bigr\vert \,ds \\ &\quad \leq \frac{1}{\varGamma (\alpha )} \sum_{i=0}^{r-1} \int _{[0,t] \cap [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (t-s)^{\alpha -1}b(s) N\bigl(x(s), I^{p_{1}}x(s), \ldots, I^{p_{m}}x(s) \bigr) \,ds \\ &\qquad{}+ \sum_{j=1}^{k} \frac{\lambda _{j}}{\theta _{q} \varGamma (\alpha + q_{j})} \Biggl( \sum_{i=0}^{r-1} \biggl( \int _{[0,\gamma _{j}] \cap [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (\gamma _{j} -s)^{\alpha + q_{j} - 1} \\ & \qquad{}\times b(s) N\bigl(x(s), I^{p_{1}}x(s), \ldots, I^{p_{m}}x(s) \bigr) \,ds\biggr) \Biggr) \\ &\qquad{}+ \frac{2 \vert \mu - \theta _{q+1} -t \theta _{q} -1 \vert }{\theta _{q} \varGamma (\alpha +1)} \sum_{i=0}^{r-1} \int _{ [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (1-s)^{\alpha } \\ & \qquad{}\times b(s) N\bigl(x(s), I^{p_{1}}x(s), \ldots, I^{p_{m}}x(s) \bigr) \,ds \\ &\qquad{}+ \frac{1}{\theta _{q} \varGamma (\alpha )} \sum_{i=0}^{r-1} \int _{[0, \mu ] \cap [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (\mu -s)^{ \alpha } \\ & \qquad{}\times b(s) N\bigl(x(s), I^{p_{1}}x(s), \ldots, I^{p_{m}}x(s) \bigr) \,ds \\ &\quad \leq \frac{1}{\varGamma (\alpha )} \sum_{i=0}^{r-1} \int _{[0,t] \cap [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (t-s)^{\alpha -1}b(s) N\biggl( \Vert x \Vert , \frac{ \Vert x \Vert }{ \varGamma (p_{1} +1)}, \ldots, \frac{ \Vert x \Vert }{ \varGamma (p_{m} +1)} \biggr) \,ds \\ &\qquad{}+ \sum_{j=1}^{k} \frac{\lambda _{j}}{\theta _{q} \varGamma (\alpha + q_{j})} ( \sum_{i=0}^{r-1} \biggl( \int _{[0,\gamma _{j}] \cap [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (\gamma _{j} -s)^{\alpha + q_{j} - 1} \\ & \qquad{}\times b(s) N\biggl( \Vert x \Vert , \frac{ \Vert x \Vert }{ \varGamma (p_{1} +1)}, \ldots, \frac{ \Vert x \Vert }{ \varGamma (p_{m} +1)} \biggr) \,ds\biggr) \\ &\qquad{}+ \frac{2 \vert \mu - \theta _{q+1} -t \theta _{q} -1 \vert }{\theta _{q} \varGamma (\alpha +1)} \sum_{i=0}^{r-1} \int _{ [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (1-s)^{\alpha } \\ &\qquad{}\times b(s) N\biggl( \Vert x \Vert , \frac{ \Vert x \Vert }{ \varGamma (p_{1} +1)}, \ldots, \frac{ \Vert x \Vert }{ \varGamma (p_{m} +1)} \biggr) \,ds \\ &\qquad{}+ \frac{1}{\theta _{q} \varGamma (\alpha )} \sum_{i=0}^{r-1} \int _{[0, \mu ] \cap [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (\mu -s)^{ \alpha } \\ & \qquad{} b(s) N\biggl( \Vert x \Vert , \frac{ \Vert x \Vert }{ \varGamma (p_{1} +1)}, \ldots, \frac{ \ll\times Vert x \Vert }{ \varGamma (p_{m} +1)} \biggr) \,ds \\ &\quad \leq \frac{1}{\varGamma (\alpha )} \sum_{i=0}^{r-1} \int _{[0,t] \cap [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (t-s)^{\alpha -1}b(s) N\bigl(\Delta \Vert x \Vert , \ldots, \Delta \Vert x \Vert \bigr) \,ds \\ &\qquad{}+ \sum_{j=1}^{k} \frac{\lambda _{j}}{\theta _{q} \varGamma (\alpha + q_{j})} \\ &\qquad{}\times \Biggl( \sum_{i=0}^{r-1} \biggl( \int _{[0,\gamma _{j}] \cap [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (\gamma _{j} -s)^{\alpha + q_{j} - 1} b(s) N \bigl(\Delta \Vert x \Vert , \ldots, \Delta \Vert x \Vert \bigr) \,ds \biggr) \Biggr) \\ &\qquad{}+ \frac{2 \vert \mu - \theta _{q+1} -t \theta _{q} -1 \vert }{\theta _{q} \varGamma (\alpha +1)} \sum_{i=0}^{r-1} \int _{ [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (1-s)^{\alpha } b(s) N\bigl(\Delta \Vert x \Vert , \ldots, \Delta \Vert x \Vert \bigr) \,ds \\ &\qquad{}+ \frac{1}{\theta _{q} \varGamma (\alpha )} \sum_{i=0}^{r-1} \int _{[0, \mu ] \cap [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (\mu -s)^{ \alpha } b(s) N\bigl(\Delta \Vert x \Vert , \ldots, \Delta \Vert x \Vert \bigr) \,ds \\ & \quad\leq \frac{1}{\varGamma (\alpha )} \sum_{i=0}^{r-1} \int _{[t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (1 -s)^{\alpha -1}b(s) N\bigl( \Delta \Vert x \Vert , \ldots, \Delta \Vert x \Vert \bigr) \,ds \\ &\qquad{}+ \sum_{j=1}^{k} \frac{\lambda _{j}}{\theta _{q} \varGamma (\alpha + q_{j})} \Biggl( \sum_{i=0}^{r-1} \int _{ [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (1 -s)^{ \alpha + q_{j} - 1} b(s) N\bigl(\Delta \Vert x \Vert , \ldots, \Delta \Vert x \Vert \bigr) \,ds \Biggr) \\ &\qquad{}+ \frac{2 \vert \mu - \theta _{q+1} -t \theta _{q} -1 \vert }{\theta _{q} \varGamma (\alpha +1)} \sum_{i=0}^{r-1} \int _{ [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (1-s)^{\alpha } b(s) N\bigl(\Delta \Vert x \Vert , \ldots, \Delta \Vert x \Vert \bigr) \,ds \\ &\qquad{}+ \frac{1}{\theta _{q} \varGamma (\alpha )} \sum_{i=0}^{r-1} \int _{ [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (1 -s)^{\alpha } b(s) N\bigl( \Delta \Vert x \Vert , \ldots, \Delta \Vert x \Vert \bigr) \,ds \\ & \quad \leq \frac{N(\Delta r_{0}, \ldots, \Delta r_{0})}{\varGamma (\alpha )} \sum_{i=0}^{r-1} \int _{[t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (1 -s)^{\alpha -1}b(s) \,ds \\ &\qquad{}+ N(\Delta r_{0}, \ldots, \Delta r_{0}) \sum _{j=1}^{k} \frac{\lambda _{j}}{\theta _{q} \varGamma (\alpha + q_{j})} \sum _{i=0}^{r-1} \int _{ [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (1 -s)^{ \alpha - 1} b(s) \,ds \\ &\qquad{}+ \frac{2 \vert \mu - \theta _{q+1} -t \theta _{q} -1 \vert N(\Delta r_{0}, \ldots, \Delta r_{0})}{\theta _{q} \varGamma (\alpha +1)} \sum_{i=0}^{r-1} \int _{ [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (1-s)^{\alpha -1} b(s) \,ds \\ &\qquad{}+ \frac{N(\Delta r_{0}, \ldots, \Delta r_{0})}{\theta _{q} \varGamma (\alpha )} \sum_{i=0}^{r-1} \int _{ [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (1 -s)^{\alpha -1} b(s) \,ds \\ &\quad \leq \frac{(\eta +\epsilon _{0}) \Delta r_{0}}{\varGamma (\alpha )} \sum_{i=0}^{r-1} \Vert \hat{b}_{i,n} \Vert + (\eta +\epsilon _{0}) \Delta r_{0} \sum_{j=1}^{k} \frac{\lambda _{j}}{\theta _{q} \varGamma (\alpha + q_{j})} \sum_{i=0}^{r-1} \Vert \hat{b}_{i,n} \Vert \\ &\qquad{}+ \frac{2 \vert \mu - \theta _{q+1} -t \theta _{q} -1 \vert }{\theta _{q} \varGamma (\alpha +1)} (\eta +\epsilon _{0}) \Delta r_{0} \sum_{i=0}^{r-1} \Vert \hat{b}_{i,n} \Vert + \frac{(\eta +\epsilon _{0}) \Delta r_{0}}{\theta _{q} \varGamma (\alpha )} \sum_{i=0}^{r-1} \Vert \hat{b}_{i,n} \Vert \\ &\quad = (\eta +\epsilon _{0}) \Delta \Vert \hat{b}_{i,n} \Vert \Biggl( \frac{1}{\varGamma (\alpha )} + \sum_{j=1}^{k} \frac{\lambda _{j}}{\theta _{q} \varGamma (\alpha + q_{j})} \\ & \qquad{} + \frac{2 \vert \mu - \theta _{q+1} -t \theta _{q} -1 \vert }{\theta _{q} \varGamma (\alpha +1)} + \frac{1}{\theta _{q} \varGamma (\alpha )} \Biggr) r_{0}\\ & \quad \leq (\eta +\epsilon _{0}) \Delta \Vert \hat{b}_{i,n} \Vert \Biggl( \frac{1}{\varGamma (\alpha )} + \sum_{j=1}^{k} \frac{\lambda _{j}}{\theta _{q} \varGamma (\alpha + q_{j})} \\ &\qquad{} + \frac{2( \vert \mu -1 \vert + \vert \theta _{q+1} -t \theta _{q} \vert ) }{\theta _{q} \varGamma (\alpha +1)} + \frac{1}{\theta _{q} \varGamma (\alpha )} \Biggr) r_{0}. \end{aligned}$$

Let \(t \in [0,1]\) and \(n \geq n_{0}\). Then

$$\begin{aligned} \bigl\Vert F^{n}x \bigr\Vert \leq{} & (\eta +\epsilon _{0}) \Delta \Vert \hat{b}_{i,n} \Vert \Biggl[ \frac{1}{\varGamma (\alpha )} + \sum_{j=1}^{k} \frac{\lambda _{j}}{\theta _{q} \varGamma (\alpha + q_{j})} \\ & {} + \frac{2( 1- \mu + \theta _{q+1} ) }{\theta _{q} \varGamma (\alpha +1)} + \frac{1}{\theta _{q} \varGamma (\alpha )} \Biggr] r_{0} \leq r_{0}, \end{aligned}$$

and so \(F^{n}x \in C\) for \(n \geq n_{0}\). By using the same reasons, one can conclude that \(F^{n}y \in C\) for \(y \in C\). Thus, \(\alpha (F^{n}x, F^{n}y) \geq 1\). Since \(F^{n}x_{0} \in C\) for \(x_{0} \in C\), \(\alpha (x_{0}, F^{n}x_{0}) \geq 1\) for all \(n \geq n_{0}\). Now, let \(x,y \in X\), \(t \in [0,1]\) and \(n \geq n_{0}\). Then we have

$$\begin{aligned} & \bigl\vert F^{n}x(t) - F^{n}y(t) \bigr\vert \\ &\quad \leq \frac{1}{\varGamma (\alpha )} \sum_{i=0}^{r-1} \int _{[0,t] \cap [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (t-s)^{\alpha -1} \bigl\vert f\bigl(s, x(s), I^{p_{1}}x(s), \ldots, I^{p_{m}}x(s) \bigr) \\ &\qquad{} - f\bigl(s, y(s), I^{p_{1}}y(s), \ldots, I^{p_{m}}y(s) \bigr) \bigr\vert \,ds \\ &\qquad{}+ \sum_{j=1}^{k} \frac{\lambda _{j}}{\theta _{q} \varGamma (\alpha + q_{j})} \sum _{i=0}^{r-1} \biggl( \int _{[0,\gamma _{j}] \cap [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (\gamma _{j} -s)^{\alpha + q_{j} - 1} \\ & \qquad{} \times\bigl\vert f\bigl(s, x(s), I^{p_{1}}x(s), \ldots, I^{p_{m}}x(s) \bigr) - f\bigl(s, y(s), I^{p_{1}}y(s), \ldots, I^{p_{m}}y(s) \bigr) \bigr\vert \,ds\biggr) \\ &\qquad{}+ \frac{2 \vert \mu - \theta _{q+1} -t \theta _{q} -1 \vert }{\theta _{q} \varGamma (\alpha +1)} \sum_{i=0}^{r-1} \int _{ [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (1-s)^{\alpha } \\ &\qquad{} \times\bigl\vert f\bigl(s, x(s), I^{p_{1}}x(s), \ldots, I^{p_{m}}x(s) \bigr) - f\bigl(s, y(s), I^{p_{1}}y(s), \ldots, I^{p_{m}}y(s) \bigr) \bigr\vert \,ds \\ &\qquad{}+ \frac{1}{\theta _{q} \varGamma (\alpha )} \sum_{i=0}^{r-1} \int _{[0, \mu ] \cap [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (\mu -s)^{ \alpha } \\ & \qquad{} \times\bigl\vert f\bigl(s, x(s), I^{p_{1}}x(s), \ldots, I^{p_{m}}x(s) \bigr) - f\bigl(s, y(s), I^{p_{1}}y(s), \ldots, I^{p_{m}}y(s) \bigr) \bigr\vert \,ds \\ & \quad\leq \frac{1}{\varGamma (\alpha )} \sum_{i=0}^{r-1} \int _{[0,t] \cap [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (t-s)^{\alpha -1} \bigl[a_{1}(s) \varLambda _{1}\bigl( \bigl\vert x(s) - y(s) \bigr\vert \bigr) \\ & \qquad{}+ a_{2}(s) \varLambda _{2}\bigl( \bigl\vert I^{p_{1}}\bigl(x(s) - y(s) \bigr) \bigr\vert \bigr) + \cdots+ a_{m+1}(s) \varLambda _{m+1}\bigl( \bigl\vert I^{p_{m}}\bigl(x(s) - y(s) \bigr) \bigr\vert \bigr) \bigr] \,ds \\ &\qquad{}+ \sum_{j=1}^{k} \frac{\lambda _{j}}{\theta _{q} \varGamma (\alpha + q_{j})} \sum _{i=0}^{r-1} \int _{[0,\gamma _{j}] \cap [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (\gamma _{j} -s)^{\alpha + q_{j} - 1} \bigl[a_{1}(s) \varLambda _{1}\bigl( \bigl\vert x(s) - y(s) \bigr\vert \bigr) \\ & \qquad{}+ a_{2}(s) \varLambda _{2}\bigl( \bigl\vert I^{p_{1}}\bigl(x(s) - y(s) \bigr) \bigr\vert \bigr) + \cdots+ a_{m+1}(s) \varLambda _{m+1}\bigl( \bigl\vert I^{p_{m}}\bigl(x(s) - y(s) \bigr) \bigr\vert \bigr) \bigr] \,ds \\ &\qquad{}+ \frac{2 \vert \mu - \theta _{q+1} -t \theta _{q} -1 \vert }{\theta _{q} \varGamma (\alpha +1)} \sum_{i=0}^{r-1} \int _{ [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (1-s)^{\alpha } \bigl[a_{1}(s) \varLambda _{1}\bigl( \bigl\vert x(s) - y(s) \bigr\vert \bigr) \\ & \qquad{}+ a_{2}(s) \varLambda _{2}\bigl( \bigl\vert I^{p_{1}}\bigl(x(s) - y(s) \bigr) \bigr\vert \bigr) + \cdots+ a_{m+1}(s) \varLambda _{m+1}\bigl( \bigl\vert I^{p_{m}}\bigl(x(s) - y(s) \bigr) \bigr\vert \bigr) \bigr] \,ds \\ &\qquad{}+ \frac{1}{\theta _{q} \varGamma (\alpha )} \sum_{i=0}^{r-1} \int _{[0, \mu ] \cap [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (\mu -s)^{ \alpha } \bigl[a_{1}(s) \varLambda _{1}\bigl( \bigl\vert x(s) - y(s) \bigr\vert \bigr) \\ & \qquad{}+ a_{2}(s) \varLambda _{2}\bigl( \bigl\vert I^{p_{1}}\bigl(x(s) - y(s) \bigr) \bigr\vert \bigr) + \cdots+ a_{m+1}(s) \varLambda _{m+1}\bigl( \bigl\vert I^{p_{m}}\bigl(x(s) - y(s) \bigr) \bigr\vert \bigr) \bigr] \,ds \\ & \quad\leq \frac{1}{\varGamma (\alpha )} \sum_{i=0}^{r-1} \int _{ [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (1-s)^{\alpha -1} \biggl[a_{1}(s) \varLambda _{1}\bigl( \Vert x - y \Vert \bigr) \\ & \qquad{}+ a_{2}(s) \varLambda _{2}\biggl( \frac{ \Vert x - y \Vert }{\varGamma (p_{1} +1)} \biggr) + \cdots+ a_{m+1}(s) \varLambda _{2}\biggl( \frac{ \Vert x - y \Vert }{\varGamma (p_{m} +1)}\biggr) \biggr] \,ds \\ &\qquad{}+ \sum_{j=1}^{k} \frac{\lambda _{j}}{\theta _{q} \varGamma (\alpha + q_{j})} \sum _{i=0}^{r-1} \int _{[0,\gamma _{j}] \cap [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (1 -s)^{\alpha + q_{j} - 1} \biggl[a_{1}(s) \varLambda _{1}\bigl( \Vert x - y \Vert \bigr) \\ & \qquad{}+ a_{2}(s) \varLambda _{2}\biggl( \frac{ \Vert x - y \Vert }{\varGamma (p_{1} +1)} \biggr) + \cdots+ a_{m+1}(s) \varLambda _{2}\biggl( \frac{ \Vert x - y \Vert }{\varGamma (p_{m} +1)}\biggr) \biggr] \,ds \\ &\qquad{}+ \frac{2 \vert \mu - \theta _{q+1} -t \theta _{q} -1 \vert }{\theta _{q} \varGamma (\alpha +1)} \sum_{i=0}^{r-1} \int _{ [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (1-s)^{\alpha } \biggl[a_{1}(s) \varLambda _{1}\bigl( \Vert x - y \Vert \bigr) \\ &\qquad{} + a_{2}(s) \varLambda _{2}\biggl( \frac{ \Vert x - y \Vert }{\varGamma (p_{1} +1)} \biggr) + \cdots+ a_{m+1}(s) \varLambda _{2}\biggl( \frac{ \Vert x - y \Vert }{\varGamma (p_{m} +1)}\biggr) \biggr] \,ds \\ &\qquad{}+ \frac{1}{\theta _{q} \varGamma (\alpha )} \sum_{i=0}^{r-1} \int _{ [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (1 -s)^{\alpha } \biggl[a_{1}(s) \varLambda _{1}\bigl( \Vert x - y \Vert \bigr) \\ & \qquad{}+ a_{2}(s) \varLambda _{2}\biggl( \frac{ \Vert x - y \Vert }{\varGamma (p_{1} +1)} \biggr) + \cdots+ a_{m+1}(s) \varLambda _{2}\biggl( \frac{ \Vert x - y \Vert }{\varGamma (p_{m} +1)}\biggr) \biggr] \,ds \\ &\quad \leq \frac{1}{\varGamma (\alpha )} \sum_{i=0}^{r-1} \Biggl[\sum_{j=1}^{m+1} \varLambda _{j}\bigl(\Delta \Vert x - y \Vert \bigr) \int _{ [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (1-s)^{\alpha -1} a_{j}(s) \,ds \Biggr] \\ &\qquad{}+ \Biggl(\sum_{j=1}^{k} \frac{\lambda _{j}}{\theta _{q} \varGamma (\alpha + q_{j})} \Biggr) \sum_{i=0}^{r-1} \Biggl[\sum_{j=1}^{m+1} \varLambda _{j}\bigl(\Delta \Vert x - y \Vert \bigr) \int _{ [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (1-s)^{\alpha -1} a_{j}(s) \,ds \Biggr] \\ &\qquad{}+ \frac{2 \vert \mu - \theta _{q+1} -t \theta _{q} -1 \vert }{\theta _{q} \varGamma (\alpha +1)} \sum_{i=0}^{r-1} \Biggl[\sum_{j=1}^{m+1} \varLambda _{j}\bigl(\Delta \Vert x - y \Vert \bigr) \int _{ [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (1-s)^{\alpha -1} a_{j}(s) \,ds \Biggr] \\ &\qquad{}+ \frac{1}{\theta _{q} \varGamma (\alpha )} \sum_{i=0}^{r-1} \Biggl[\sum_{j=1}^{m+1} \varLambda _{j}\bigl(\Delta \Vert x - y \Vert \bigr) \int _{ [t_{i} + \frac{1}{n} , t_{i+1} - \frac{1}{n}]} (1-s)^{\alpha -1} a_{j}(s) \,ds \Biggr]. \end{aligned}$$

If \(x, y \notin C\), then \(\alpha (x, y) = 0\), and so \(\alpha (x, y) \,d(F^{n}x, F^{n}y) =0 \leq d(x,y)\) for \(x, y \notin C\). Hence, \(\|x- y\| \leq 2r_{0} \leq 2 \frac{\delta _{1}}{2} = \delta _{1}\). Now, by using (5), \(\varLambda _{j} (\Delta \|x - y \|) \leq (B_{j} + \epsilon _{1}) \Delta \|x - y \|\). Thus,

$$\begin{aligned} & \bigl\vert F^{n}x(t) - F^{n}y(t) \bigr\vert \\ &\quad \leq \frac{1}{\varGamma (\alpha )} \sum_{i=0}^{r-1} \Biggl[ \sum_{j=1}^{m+1} (B_{j} + \epsilon _{1}) \Delta \Vert x - y \Vert \Vert \hat{a}_{j,i,n} \Vert \Biggr] \\ &\qquad{}+ \Biggl(\sum_{j=1}^{k} \frac{\lambda _{j}}{\theta _{q} \varGamma (\alpha + q_{j})} \Biggr) \sum_{i=0}^{r-1} \Biggl[\sum_{j=1}^{m+1} (B_{j} + \epsilon _{1}) \Delta \Vert x - y \Vert \Vert \hat{a}_{j,i,n} \Vert \Biggr] \\ &\qquad{}+ \frac{2 \vert \mu - \theta _{q+1} -t \theta _{q} -1 \vert }{\theta _{q} \varGamma (\alpha +1)} \sum_{i=0}^{r-1} \Biggl[\sum_{j=1}^{m+1} (B_{j} + \epsilon _{1}) \Delta \Vert x - y \Vert \Vert \hat{a}_{j,i,n} \Vert \Biggr] \\ &\qquad{}+ \frac{1}{\theta _{q} \varGamma (\alpha )} \sum_{i=0}^{r-1} \Biggl[\sum_{j=1}^{m+1} (B_{j} + \epsilon _{1}) \Delta \Vert x - y \Vert \Vert \hat{a}_{j,i,n} \Vert \Biggr], \end{aligned}$$

and so

$$\begin{aligned} & \bigl\Vert F^{n}x - F^{n}y \bigr\Vert \\ &\quad \leq \Delta \Biggl( \frac{1}{\varGamma (\alpha )} + \sum_{j=1}^{k} \frac{\lambda _{j}}{\theta _{q} \varGamma (\alpha + q_{j})} + \frac{2(1- \mu + \theta _{q+1}) }{\theta _{q} \varGamma (\alpha +1)} \frac{1}{\theta _{q} \varGamma (\alpha )} \Biggr) \\ & \qquad{}\times \Biggl( \sum_{j=1}^{m+1} \Biggl[ (B_{j} + \epsilon _{1}) \sum_{i=0}^{r-1} \Vert \hat{a}_{j,i,n} \Vert \Biggr] \Biggr) \Vert x - y \Vert = \lambda \Vert x - y \Vert , \end{aligned}$$

where \(\lambda:= \Delta ( \frac{1}{\varGamma (\alpha )} + \sum_{j=1}^{k} \frac{\lambda _{j}}{\theta _{q} \varGamma (\alpha + q_{j})} + \frac{2(1- \mu + \theta _{q+1}) }{\theta _{q} \varGamma (\alpha +1)} \frac{1}{\theta _{q} \varGamma (\alpha )} ) \times ( \sum_{j=1}^{m+1} [ (B_{j} + \epsilon _{1}) \sum_{i=0}^{r-1} \| \hat{a}_{j,i,n}\| ] )\). Hence, \(\| F^{n}x - F^{n}y \| \leq \lambda \|x - y \|\) for all \(x,y \in X\). Now consider the map \(\psi: [0, \infty ) \to [0, \infty )\) defined by \(\psi (t) = \lambda t\). Then we have \(\sum_{i=1}^{\infty } \psi ^{i} (t) =\lambda t + \lambda ^{2} t + \cdots = \frac{\lambda }{1 - \lambda } t < \infty \) for all \(t \in [0, \infty )\). Thus, \(\alpha (x,y) \,d(F^{n}x, F^{n}y) \leq \psi ( d(x,y) )\) for all \(x,y \in X\). Now, by using Lemma 1, we conclude that \(F^{n}\) has a fixed point \(x_{n}\) for each \(n \geq n_{0}\), that is, \(x_{n}(t) = F^{n}{x_{n}}(t) \) for all \(t \in [0,1]\). Here, the map \(F^{n}\) is defined by (3). Let \(\{x_{n} \}\) be a sequence of the fixed points. By using the proof, \(\{x_{n} \} \subset C\) and so \(\{x_{n} \}\) is bounded in X. In fact, we have

$$ x_{n}(t) = \int _{ [0,1]\backslash \{ \bigcup _{i=0}^{r-1} [t_{i} + \frac{1}{n}, t_{i+1} -\frac{1}{n} ] \} } G(t,s) f\bigl(s, x_{n}(s), I^{p_{1}}x_{n}(s), \dots , I^{p_{m}}x_{n}(s) \bigr) \,ds $$

for all \(t \in [0,1]\). Note that G is continuous with respect to t on \([0,1]\backslash \{ \bigcup_{i=0}^{r-1} [t_{i} +\frac{1}{n}, t_{i+1} - \frac{1}{n} ] \} \) as well as the maps \(\frac{\partial G}{\partial t}, \ldots, \frac{\partial ^{[\alpha ]+1} G}{\partial t^{[\alpha ] +1}}\). Hence,

$$\begin{aligned} &\lim_{t_{k} \to t} \frac{\partial ^{m} x_{n}(t_{k})}{\partial t_{k}^{m}} \\ &\quad = \lim_{t_{k} \to t} \int _{ [0,1]\backslash \{ \bigcup _{i=0}^{r-1} [t_{i} +\frac{1}{n}, t_{i+1} -\frac{1}{n} ] \} } \frac{\partial ^{m} G}{\partial t_{k}^{m}}(t_{k},s) f\bigl(s, x_{n}(s), I^{p_{1}}x_{n}(s), \ldots, I^{p_{m}}x_{n}(s) \bigr) \,ds \\ &\quad = \int _{ [0,1]\backslash \{ \bigcup _{i=0}^{r-1} [t_{i} +\frac{1}{n}, t_{i+1} -\frac{1}{n} ] \} } \frac{\partial ^{m} G}{\partial t^{m}}(t,s) f\bigl(s, x_{n}(s), I^{p_{1}}x_{n}(s), \ldots, I^{p_{m}}x_{n}(s) \bigr) \,ds = \frac{\partial ^{m} x_{n}(t)}{\partial t^{m}} \end{aligned}$$

for all \(1 \leq m \leq [\alpha ]+1\) and \(t \in [0,1]\backslash \{ \bigcup_{i=0}^{r-1} [t_{i} +\frac{1}{n}, t_{i+1} -\frac{1}{n} ] \} \). Thus, the fixed points \(x_{n}\) belong to the space \(X^{\alpha }= \{ x: D^{\alpha }x \in C[0,1] \}\). This implies that the sequence \(\{x'_{n} \}\) is equi-continuous, and so \(\{x_{n} \}\) is relatively compact in X. Now, by using the Arzela–Ascoli theorem, there exists \(x_{0} \in X\) such that \(\lim_{n \to \infty } x_{n} = x_{0}\). One can check that \(x_{0}\) satisfies the boundary value conditions of problem (1). Since \(x_{n} \in C\) for all n, we have

$$\begin{aligned} &\chi _{ [0,1]\backslash \{ \bigcup _{i=0}^{r-1} [t_{i} +\frac{1}{n}, t_{i+1} -\frac{1}{n} ] \}}(s) \bigl\vert G(t,s) f\bigl(s, x_{n}(s), I^{p_{1}}x_{n}(s), \ldots, I^{p_{m}}x_{n}(s) \bigr) \bigr\vert \\ &\quad \leq (\eta +\epsilon _{0}) \Delta \Biggl[ \frac{1}{\varGamma (\alpha )} + \sum _{j=1}^{k} \frac{\lambda _{j}}{\theta _{q} \varGamma (\alpha + q_{j})} + \frac{2( 1- \mu + \theta _{q+1} ) }{\theta _{q} \varGamma (\alpha +1)} + \frac{1}{\theta _{q} \varGamma (\alpha )} \Biggr] r_{0} \\ &\qquad{}\times\chi _{ [0,1]\backslash \{ \bigcup _{i=0}^{r-1} [t_{i} +\frac{1}{n}, t_{i+1} -\frac{1}{n} ] \}}(s) (1-s)^{\alpha - 1} b(s), \end{aligned}$$

where \(\chi _{E}(s) = 1\) whenever \(s \in E\) and \(\chi _{E}(s) = 0\) whenever \(s \notin E\). Note that the map \((1-s)^{\alpha - 1} b(s)\) belongs to \(L^{1}(K_{j})\) for every compact subset \(K_{j} \subseteq (t_{j}, t_{j+1})\) for \(j=1,\dots ,r-1\), and so \(\chi _{ [0,1]\backslash \{ \bigcup _{i=0}^{r-1} [t_{i} +\frac{1}{n}, t_{i+1} -\frac{1}{n} ] \}}(s)(1-s)^{\alpha - 1} b(s) \in L^{1}[0,1]\). Now, by using the Lebesgue dominated theorem, we conclude that

$$\begin{aligned} x_{0}(t) ={}& \lim_{n \to \infty } x_{n}(t) \\ ={}& \lim_{n \to \infty } \int _{0}^{1} \chi _{ [0,1]\backslash \{ \bigcup _{i=0}^{r-1} [t_{i} +\frac{1}{n}, t_{i+1} -\frac{1}{n} ] \}}(s) G(t,s) f \bigl(s, x_{n}(s), I^{p_{1}}x_{n}(s),\dots , I^{p_{m}}x_{n}(s) \bigr) \,ds \\ ={}& \int _{0}^{1} G(t,s) f\bigl(s, x_{0}(s), I^{p_{1}}x_{0}(s),\dots , I^{p_{m}}x_{0}(s) \bigr) \,ds = Fx_{0}(t). \end{aligned}$$

In fact, by using a similar method in (4), we have

$$\begin{aligned} &\bigl\vert f\bigl(s, x_{n}(s), I^{p_{1}}x_{n}(s), \dots , I^{p_{m}}x_{n}(s) \bigr)- f\bigl(s, x_{0}(s), I^{p_{1}}x_{0}(s),\dots , I^{p_{m}}x_{0}(s) \bigr) \bigr\vert \\ &\quad \leq \sum_{j=1}^{m+1} a_{j}(s) \varLambda _{j}\bigl(\Delta \Vert x_{n} - x \_0 \Vert \bigr). \end{aligned}$$

Let \(\epsilon >0\) be given. Choose \(\delta (\epsilon ) >0\) such that \(\varLambda _{j}(\Delta \|x_{n} - x_{0}\|) \leq (\epsilon + B_{j}) \epsilon \) for all \(n\geq n_{0}\) with \(\|x_{n} - x_{0} \| <\delta (\epsilon )\). Hence,

$$\begin{aligned} &\bigl\vert f\bigl(s, x_{n}(s), I^{p_{1}}x_{n}(s), \dots , I^{p_{m}}x_{n}(s) \bigr)- f\bigl(s, x_{0}(s), I^{p_{1}}x_{0}(s),\dots , I^{p_{m}}x_{0}(s) \bigr) \bigr\vert \\ &\quad \leq \epsilon \sum_{j=1}^{m+1} (\epsilon + B_{j}) a_{j}(s), \end{aligned}$$

and so \(f(s, x_{n}(s), I^{p_{1}}x_{n}(s),\dots , I^{p_{m}}x_{n}(s) ) \to f(s, x_{0}(s), I^{p_{1}}x_{0}(s),\dots , I^{p_{m}}x_{0}(s) )\) as \(x_{n} \to x_{0}\). This implies that F has the fixed point \(x_{0}\) which is a solution for problem (1). □

Now, we provide an example to illustrate our main result.

Example 1

Consider the strong singular problem

$$\begin{aligned} D^{\frac{3}{2}} x(t) = f\bigl(t, x(t), I^{\frac{1}{2}}x(t) \bigr), \end{aligned}$$
(6)

with boundary conditions \(x(0)=\int _{0}^{1} x(\xi ) \,d\xi \) and \(x(\frac{1}{3} ) = I^{\frac{5}{2} }x(\frac{1}{2})\), where

$$ f(t, x_{1}, x_{2}) = \frac{0.1}{(1-t)} \bigl( \vert x_{1} \vert + \vert x_{2} \vert \bigr). $$

Put \(m=1\), \(k=1\), \(t_{0}= 0\), \(t_{1}= 1\), \(\mu = \frac{1}{3}\), \(\lambda _{1}= 1\), \(q_{1}= \frac{5}{2}\), \(\gamma _{1} = \frac{1}{2}\), \(\varLambda _{1}(x)=\varLambda _{2}(x)=x\), \(a_{1}(t)=a_{2}(t)=b(t)= \frac{0.1}{1-t}\), and \(N(x_{1}, x_{2})= |x_{1}| +|x_{2}|\). Then \(B_{1}=B_{2}=1\), where \(B_{i}= \lim_{z \to 0^{+}} \frac{\varLambda _{i}(z)}{z}\). Note that \((1-t)^{\alpha -1} a_{i}(t) \in L^{1}(K_{j})\) for all compact subsets \(K_{j} \in (t_{j}, t_{j+1})\) (\(j=0,1\)), θ q :=1 i = 1 k λ i γ i q i Γ ( q i + 1 ) =1 ( 1 2 ) 5 2 Γ ( 7 2 ) =1 2 15 2 π , θ q + 1 :=1 i = 1 k λ i γ i q i + 1 Γ ( q i + 2 ) =1 ( 1 2 ) 7 2 Γ ( 9 2 ) =1 2 105 2 π ,

Δ:=max { 1 , 1 Γ ( p 1 + 1 ) , , 1 Γ ( p m + 1 ) } =max { 1 , 1 Γ ( 3 2 ) } = 2 π ,

\(\|\hat{b}_{i,n} \|= \|\hat{a}_{j',i,n} \| \leq \int _{ \frac{1}{n}}^{1 - \frac{1}{n}} (1-s)^{\frac{1}{2}} \frac{0.1}{1-s} \,ds =0. 2\),

$$ \bigl\vert f(t, x_{1}, \ldots, x_{m+1}) \bigr\vert \leq b(t) N( x_{1}, \ldots, x_{m+1}), $$

\(N(x_{1}, x_{2}) = |x_{1}|+ |x_{2}|\), \(\eta:= \lim_{z \to 0^{+}} \frac{N(z, z)}{z}=2 \in [0,\infty )\),

Δ i = 0 r 1 ( [ 1 Γ ( α ) + j = 1 k λ j θ q Γ ( α + q j ) + 2 ( θ q + 1 μ + 1 ) θ q Γ ( α + 1 ) + 1 θ q Γ ( α ) ] j = 1 m + 1 B j a ˆ j , i , n ) 2 π ( [ 1 Γ ( 3 2 ) + 1 θ q Γ ( 7 2 ) + 2 ( θ q + 1 1 3 + 1 ) θ q Γ ( α + 1 ) + 1 θ q Γ ( α ) ] × 0.2 ) < 1 ,

and \(\eta \sum_{i=0}^{r-1} \| \hat{b}_{i,n} \| [ \frac{ 1}{\varGamma (\alpha )} + \sum_{j=1}^{k} \frac{\lambda _{j} }{\theta _{q} \varGamma (\alpha + q_{j})} + \frac{2( \theta _{q+1} - \mu +1)}{\theta _{q} \varGamma (\alpha +1)} + \frac{1}{\theta _{q}\varGamma (\alpha )} ] \in [0,\frac{1}{\Delta })\). Now, by using Theorem (5), we conclude that problem (6) has a solution.

3 Conclusion

There are some phenomena that can be modeled by fractional differential equations. But most singular fractional differential equations studied by researchers have simple singularity. In this work, by providing a new technique we review a strong singular fractional differential equation under some boundary value conditions.