1 Introduction

Throughout the article, \(\mathbb{R}\) denotes the set of real numbers, \(\boldsymbol {x} = (x_{1}, x_{2}, \ldots , x_{n})\) denotes n-tuple (n-dimensional real vectors), the set of vectors can be written as

$$\begin{aligned}& \mathbb{R}^{n} = \bigl\{ {\boldsymbol {x}=(x_{1}, x_{2}, \ldots , x_{n}): x_{i} \in \mathbb{R}, i = 1,2,\ldots ,n} \bigr\} , \\& \mathbb{R}^{n}_{+}=\bigl\{ \boldsymbol {x}=(x_{1},x_{2}, \ldots ,x_{n}): x_{i}>0, i=1,2, \ldots ,n\bigr\} , \\& \mathbb{R}^{n}_{-}=\bigl\{ \boldsymbol {x}=(x_{1},x_{2}, \ldots ,x_{n}): x_{i}< 0, i=1,2, \ldots ,n\bigr\} . \end{aligned}$$

In particular, the notations \(\mathbb{R}\) and \(\mathbb{R}_{+}\) denote \(\mathbb{R}^{1}\) and \(\mathbb{R}^{1}_{+}\), respectively.

In recent years, the Schur-convexity, Schur-geometric, and Schur-harmonic convexities of various symmetric functions have been a hot topic of inequality research [130].

The following complete symmetric function is an important class of symmetric functions.

For \(\boldsymbol {x}=(x_{1},x_{2},\ldots ,x_{n}) \in \mathbb{R}^{n}\), the complete symmetric function \(c_{n}(\boldsymbol {x},r)\) is defined as

$$ c_{n}(\boldsymbol {x},r)=\sum_{i_{1}+ i_{2}+\cdots +i_{n}=r}x_{1}^{i_{1}}x_{2}^{i_{2}} \cdots x_{n}^{i_{n}}, $$
(1)

where \(c_{0}(\boldsymbol {x},r)=1\), \(r\in \{1,2,\ldots , n \}\), \(i_{1},i_{2},\ldots , i_{n}\) are nonnegative integers.

It has been investigated by many mathematicians, and there are many interesting results in the literature.

Guan [4] discussed the Schur-convexity of \(c_{n}(\boldsymbol {x},r)\) and proved the following.

Proposition 1

\(c_{n}(\boldsymbol {x},r)\)is increasing and Schur-convex on\(\mathbb{R}^{n}_{+}\).

Subsequently, Chu et al. [1] proved the following.

Proposition 2

\(c_{n}(\boldsymbol {x},r)\)is Schur-geometrically convex and Schur-harmonically convex on \(\mathbb{R}^{n}_{+}\).

In 2016, Shi et al. [18] further considered the Schur-convexity of \(c_{n}(\boldsymbol {x},r)\) on \(\mathbb{R}^{n}_{-}\), which proved the following proposition.

Proposition 3

Ifris an even integer (or odd integer, respectively), then\(c_{n}(\boldsymbol {x},r)\)is decreasing and Schur-convex (or increasing and Schur-concave, respectively) on\(\mathbb{R}^{n}_{-}\).

The dual form of the complete symmetric function \(c_{n}(\boldsymbol {x},r)\) is defined as

$$ c^{*}_{n}(\boldsymbol {x},r)=\prod_{i_{1}+ i_{2}+\cdots +i_{n}=r} \sum^{n}_{j=1}i_{j} x_{j}, $$
(2)

where \(c^{*}_{0}(\boldsymbol {x},r)=1\), \(r\in \{1,2,\ldots , n \}\), \(i_{1},i_{2},\ldots , i_{n}\) are nonnegative integers.

Zhang and Shi [17] proved the following two propositions.

Proposition 4

For\(r=1, 2,\ldots , n\), \(c^{*}_{n}(\boldsymbol {x},r)\)is increasing and Schur-concave on\(\mathbb{R}^{n}_{+}\).

Proposition 5

For\(r=1, 2,\ldots , n\), \(c^{*}_{n}(\boldsymbol {x},r)\)is Schur-geometrically convex and Schur-harmonically convex on\(\mathbb{R}^{n}_{+}\).

Notice that

$$ c^{*}_{n}(\boldsymbol {-x},r)=(-1)^{r} c^{*}_{n}(\boldsymbol {x},r), $$

it is not difficult to prove the following proposition.

Proposition 6

Ifris an even integer (or odd integer, respectively), then\(c^{*}_{n}(\boldsymbol {x},r)\)is decreasing and Schur-concave (or increasing and Schur-convex, respectively) on\(\mathbb{R}^{n}_{-}\).

In this paper we will study the Schur-convexity, Schur-geometric and Schur-harmonic convexities of the following composite function of \(c^{*}_{n} (\boldsymbol {x},r )\):

$$ c^{*}_{n} \bigl(f(\boldsymbol {x}),r \bigr)=c^{*}_{n} \bigl(f(x_{1}),f(x_{2}), \ldots, f(x_{n}),r \bigr)=\prod_{i_{1}+ i_{2}+\cdots +i_{n}=r} \sum ^{n}_{ j=1}i_{j} \bigl(f(x_{j}) \bigr), $$
(3)

where f is a positive function which satisfies certain conditions.

Our main results are as follows.

Theorem 1

Let\(I \subset \mathbb{R}\)be a symmetric convex set with nonempty interior, and let\(f : I\rightarrow \mathbb{R}_{+}\)be continuous onIand differentiable in the interior ofI.

  1. (a)

    Iffis a log-convex function onI, then for any\(r = 1,2, \ldots , n\), \(c^{*}_{n} (f(\boldsymbol {x}), r )\)is a Schur-convex function on\(I^{n}\);

  2. (b)

    Iffis a concave function onI, then for any\(r = 1,2, \ldots , n\), \(c^{*}_{n} (f(\boldsymbol {x}), r )\)is a Schur-concave function on\(I^{n}\).

Theorem 2

Let\(I \subset \mathbb{R}_{+}\)be a symmetric convex set with nonempty interior and let\(f : I\rightarrow \mathbb{R}_{+}\)be continuous onIand differentiable in the interior ofI.

  1. (a)

    Iffis an increasing and log-convex function onI, then for any\(r = 1,2, \ldots , n\), \(c^{*}_{n} (f(\boldsymbol {x}), r )\)is a Schur-geometrically convex function on\(I^{n}\).

  2. (b)

    Iffis a descending and concave function onI, then for any\(r = 1,2, \ldots , n\), \(c^{*}_{n} (f(\boldsymbol {x}), r )\)is a Schur-geometrically concave function on\(I^{n}\).

Theorem 3

Let\(I \subset \mathbb{R}_{+}\)be a symmetric convex set with nonempty interior, and let\(f : I\rightarrow \mathbb{R}_{+}\)be continuous onIand differentiable in the interior ofI.

  1. (a)

    Iffis an increasing and log-convex function onI, then for any\(r = 1,2, \ldots , n\), \(c^{*}_{n} (f(\boldsymbol {x}), r )\)is a Schur-harmonically convex function on\(I^{n}\).

  2. (b)

    Iffis a descending and concave function onI, then for any\(r = 1,2, \ldots , n\), \(c^{*}_{n} (f(\boldsymbol {x}), r )\)is a Schur-harmonically concave function on\(I^{n}\).

2 Definitions and lemmas

For convenience, we introduce some definitions as follows.

Definition 1

([31, 32])

Let \(\boldsymbol {x} = ( x_{1},x_{2},\ldots , x_{n })\) and \(\boldsymbol {y} = ( y_{1},y_{2},\ldots , y_{n }) \in \mathbb{R}^{n}\).

  1. (a)

    \(\boldsymbol {x}\ge \boldsymbol {y}\) means \(x_{i} \ge y_{i}\) for all \(i=1, 2, \ldots , n\).

  2. (b)

    Let \(\varOmega \subset \mathbb{R} ^{n}\), φ: \(\varOmega \to \mathbb{\mathbb{R}}\) is said to be increasing if \(\boldsymbol {x} \ge \boldsymbol {y}\) implies \(\varphi {(\boldsymbol {x})} \ge \varphi {(\boldsymbol {y})}\). φ is said to be decreasing if and only if −φ is increasing.

Definition 2

([31, 32])

Let \(\boldsymbol {x} = ( x_{1},x_{2},\ldots , x_{n })\) and \(\boldsymbol {y} = ( y_{1},y_{2},\ldots , y_{n }) \in \mathbb{R}^{n}\).

  1. (a)

    x is said to be majorized by y (in symbols \(\boldsymbol {x} \prec \boldsymbol {y}\)) if \(\sum_{i = 1}^{k} x_{[i]} \le \sum_{i = 1}^{k} y_{[i]}\) for \(k = 1,2,\ldots ,n - 1\) and \(\sum_{i = 1}^{n} x_{i} = \sum_{i = 1}^{n} y_{i}\), where \(x_{[1]}\ge x_{[2]}\ge \cdots \ge x_{[n]}\) and \(y_{[1]}\ge y_{[2]}\ge \cdots \ge y_{[n]}\) are rearrangements of x and y in a descending order.

  2. (b)

    Let \(\varOmega \subset \mathbb{R}^{n}\), φ: \(\varOmega \to \mathbb{R}\) is said to be a Schur-convex function on Ω if \(\boldsymbol {x} \prec \boldsymbol {y}\) on Ω implies \(\varphi ( \boldsymbol {x} ) \le \)\(\varphi ( \boldsymbol {y} ) \). φ is said to be a Schur-concave function on Ω if and only if −φ is Schur-convex function on Ω.

Definition 3

([31, 32])

Let \(\boldsymbol {x} = ( x_{1},x_{2},\ldots , x_{n })\) and \(\boldsymbol {y} = ( y_{1},y_{2},\ldots , y_{n }) \in \mathbb{R}^{n}\).

  1. (a)

    \(\varOmega \subset \mathbb{R}^{n}\) is said to be a convex set if \(\boldsymbol {x},\boldsymbol {y}\in \varOmega \), \(0 \leq \alpha \leq 1\), implies \(\alpha \boldsymbol {x}+(1-\alpha )\boldsymbol {y}= (\alpha x_{1}+(1-\alpha )y_{1}, \alpha x_{2}+(1-\alpha )y_{2},\ldots ,\alpha x_{n}+(1-\alpha )y_{n} )\in \varOmega \).

  2. (b)

    Let \(\varOmega \subset \mathbb{R}^{n}\) be a convex set. A function φ: \(\varOmega \to \mathbb{R}\) is said to be a convex function on Ω if

    $$ \varphi \bigl(\alpha \boldsymbol {x}+(1-\alpha )\boldsymbol {y} \bigr)\leq \alpha \varphi ( \boldsymbol {x})+(1-\alpha )\varphi (\boldsymbol {y}) $$

    for all \(\boldsymbol {x},\boldsymbol {y}\in \varOmega \), and all \(\alpha \in [0,1]\). φ is said to be a concave function on Ω if and only if −φ is a convex function on Ω.

Definition 4

([31, 32])

  1. (a)

    A set \(\varOmega \subset \mathbb{R}^{n}\) is called a symmetric set if \(\boldsymbol {x}\in \varOmega \) implies \(\boldsymbol {x}P \in \varOmega \) for every \(n\times n\) permutation matrix P.

  2. (b)

    A function \(\varphi : \varOmega \to \mathbb{R}\) is called symmetric if, for every permutation matrix P, \(\varphi (\boldsymbol {x}P) = \varphi (\boldsymbol {x})\) for all \(\boldsymbol {x} \in \varOmega \).

Lemma 1

(Schur-convex function decision theorem [31, 32])

Let\(\varOmega \subset \mathbb{R} ^{n} \)be symmetric and have a nonempty interior convex set. \(\varOmega ^{0}\)is the interior ofΩ. \(\varphi :\varOmega \to \mathbb{R} \)is continuous onΩand differentiable in\(\varOmega ^{0}\). Thenφis the Schur-convex (or Schur-concave, respectively) function if and only ifφis symmetric onΩand

$$ ( x_{1} - x_{2} ) \biggl( \frac{\partial \varphi }{\partial x_{1}} - \frac{\partial \varphi }{\partial x_{2} } \biggr) \ge 0\ (\textit{or }\leq 0, \textit{respectively}) $$
(4)

holds for any\(\boldsymbol {x} \in \varOmega ^{0} \).

The first systematical study of the functions preserving the ordering of majorization was made by Issai Schur in 1923. In Schur’s honor, such functions are said to be “Schur-convex”. They can be used extensively in analytic inequalities, combinatorial optimization, quantum physics, information theory, and other related fields. See [31].

Definition 5

([33])

Let \(\boldsymbol {x} = ( x_{1},x_{2},\ldots , x_{n }) \in \mathbb{R}_{+}^{n}\) and \(\boldsymbol {y} = ( y_{1},y_{2},\ldots , y_{n }) \in \mathbb{R}_{+}^{n}\).

  1. (a)

    \(\varOmega \subset \mathbb{R}_{+} ^{n}\) is called a geometrically convex set if \((x_{1}^{\alpha }y_{1}^{\beta },x_{2}^{\alpha }y_{2}^{\beta },\ldots ,x_{n}^{ \alpha }y_{n}^{\beta }) \in \varOmega \) for all x, \(\boldsymbol {y} \in \varOmega \) and α, \(\beta \in [0, 1]\) such that \(\alpha +\beta =1\).

  2. (b)

    Let \(\varOmega \subset \mathbb{R}_{+} ^{n}\). The function φ: \(\varOmega \to \mathbb{R}_{+}\) is said to be a Schur-geometrically convex function on Ω if \((\log x_{1},\log x_{2},\ldots ,\log x_{n}) \prec (\log y_{1},\log y_{2}, \ldots , \log y_{n})\) on Ω implies \(\varphi (\boldsymbol {x} ) \le \varphi (\boldsymbol {y} )\). The function φ is said to be a Schur-geometrically concave function on Ω if and only if −φ is a Schur-geometrically convex function on Ω.

The Schur-geometric convexity was proposed by Zhang [33] in 2004, and it was investigated by Chu et al. [34], Guan [35], Sun et al. [36], and so on. We also note that some authors use the term “Schur multiplicative convexity”.

In 2009, Chu ([1, 2, 37]) introduced the notion of Schur-harmonically convex function, and some interesting inequalities were obtained.

Definition 6

([37])

Let \(\varOmega \subset \mathbb{R}_{+}^{n}\) or \(\varOmega \subset \mathbb{R}_{-}^{n}\).

  1. (a)

    A set Ω is said to be harmonically convex if \(\frac{\boldsymbol{xy}}{\lambda {\boldsymbol{x}}+(1-\lambda ){\boldsymbol{y}}} \in \varOmega \) for every \({\boldsymbol{x},\boldsymbol{y}}\in \varOmega \) and \(\lambda \in [0,1]\), where \(\boldsymbol{xy}=\sum_{i=1}^{n}x_{i}y_{i}\) and \(\frac{1}{\boldsymbol{x}}= (\frac{1}{x_{1}}, \frac{1}{x_{2}}, \ldots ,\frac{1}{x_{n}} )\).

  2. (b)

    A function \(\varphi :\varOmega \to \mathbb{R}_{+}\) is said to be Schur-harmonically convex on Ω if \(\frac{1}{\boldsymbol{x}} \prec \frac{1}{\boldsymbol{y}}\) implies \(\varphi ({\boldsymbol{x}}) \le \varphi ({\boldsymbol{y}})\). A function φ is said to be a Schur-harmonically concave function on Ω if and only if −φ is a Schur-harmonically convex function.

Remark 1

We extend the definition and determination theorem of Schur-harmonically convex function established by Chu as follows:

  1. (a)

    \(\varOmega \subset \mathbb{R}^{n}_{+}\) is extended to \(\varOmega \subset \mathbb{R}^{n}_{+}\) or \(\varOmega \subset \mathbb{R}^{n}_{-}\);

  2. (b)

    The function \(\varphi :\varOmega \to \mathbb{R}\) must not be a positive function.

Lemma 2

([31, 32])

Let the set\(\mathbb{A}, \mathbb{B}\subset \mathbb{R}\), \(\varphi :\mathbb{B}^{n}\rightarrow \mathbb{R}\), \(f:\mathbb{A}\rightarrow \mathbb{B}\)and\(\psi (x_{1}, x_{2}, \ldots , x_{n}) = \varphi (f(x_{1}),f(x_{2}), \ldots , f(x_{n})):\mathbb{A}^{n}\rightarrow \mathbb{R}\).

  1. (a)

    Iffis convex andφis increasing and Schur-convex, thenψis Schur-convex;

  2. (b)

    Iffis concave, φis increasing and Schur-concave, thenψis Schur-concave.

Lemma 3

Let the set\(\varOmega \subset \mathbb{R}^{n}_{+}\). The function\(\varphi :\varOmega \rightarrow \mathbb{R}_{+}\)is differentiable.

  1. (a)

    Ifφis increasing and Schur-convex, thenφis Schur geometrically convex.

  2. (b)

    Ifφis decreasing and Schur-concave, thenφis Schur geometrically concave.

Lemma 4

Let the set\(\varOmega \subset \mathbb{R}^{n}_{+}\). The function\(\varphi :\varOmega \rightarrow \mathbb{R}_{+}\)is differentiable.

  1. (a)

    Ifφis increasing and Schur-convex, thenφis Schur-harmonically convex.

  2. (b)

    Ifφis decreasing and Schur-concave, thenφis Schur-harmonically concave.

Lemma 5

([31, 32])

Let\((\boldsymbol {x} =(x_{1},x_{2}, \ldots ,x_{n})\in \mathbb{R}^{n}\). Then

$$ \bigl(A(\boldsymbol {x}),A(\boldsymbol {x}), \ldots , A(\boldsymbol {x})\bigr)\prec (\boldsymbol {x} =(x_{1},x_{2}, \ldots ,x_{n}), $$
(5)

where\(A(\boldsymbol {x})=\frac{1}{n}\sum^{n}_{i} x_{i}\).

Lemma 6

([22])

Let

$$ q(t)=\frac{u^{t}-1}{t}. $$

If\(u>1\), then\(q(t)\)is a log-convex function on\(\mathbb{R}_{+}\).

3 Proof of main results

Proof of Theorem 1

For the case of \(r=1\) and \(r=2\), it is easy to prove that \(c^{*}_{n} (f(\boldsymbol {x}), r )\) is Schur-convex on \(I^{n}\).

Now consider the case of \(r \geq 3\). By the symmetry of \(c^{*}_{n} (f(\boldsymbol {x}), r )\), without loss of generality, we can set \(x_{1}> x_{2}\).

$$\begin{aligned} c^{*}_{n} \bigl((\boldsymbol {x}), r \bigr) ={}& \prod _{{i_{1}+i_{2}+\cdots +i_{n}=r \atop i_{1}\neq 0, i_{2}=0 }} {\sum_{j=1}^{n}i_{j}f(x_{j})} \times \prod_{{i_{1}+i_{2}+\cdots +i_{n}=r \atop i_{1}= 0, i_{2}\neq 0 }} {\sum _{j=1}^{n}i_{j}f(x_{j})} \\ &{} \times \prod_{{i_{1}+i_{2}+\cdots +i_{n}=r \atop i_{1}\neq 0, i_{2} \neq 0 }} {\sum _{j=1}^{n}i_{j}f(x_{j})} \times \prod_{{i_{1}+i_{2}+ \cdots +i_{n}=r \atop i_{1}= 0, i_{2}=0 }} {\sum _{j=1}^{n}i_{j}f(x_{j})}. \end{aligned}$$

Then

$$\begin{aligned} \frac{\partial c^{*}_{n} (f(\boldsymbol {x}), r )}{\partial x_{1}}= {}&c^{*}_{n} \bigl(f(\boldsymbol {x}), r \bigr) \\ &{}\times \biggl( \sum_{{i_{1}+i_{2}+\cdots +i_{n}=r \atop i_{1}\neq 0, i_{2}=0 }} \frac{i_{1}f'(x_{1})}{\sum_{j=1}^{n}i_{j}f(x_{j})}+ \sum_{{i_{1}+i_{2}+ \cdots +i_{n}=r \atop i_{1}\neq 0, i_{2}\neq 0 }} \frac{i_{1}f'(x_{1})}{\sum_{j=1}^{n}i_{j}f(x_{j})} \biggr) \\ ={}& c^{*}_{n} \bigl(f(\boldsymbol {x}), r \bigr) \biggl( \sum _{{k+k_{3}+\cdots +k_{n}=r \atop k\neq 0}} \frac{kf'(x_{1})}{k f(x_{1})+\sum_{j=3}^{n}i_{j}f(x_{j})} \\ &{}+\sum_{{k+m+i_{3}+\cdots +i_{n}=r \atop k\neq 0, m\neq 0 }} \frac{kf'(x_{1})}{k f(x_{1})+m f(x_{2})+\sum_{j=3}^{n}i_{j}f(x_{j})} \biggr). \end{aligned}$$
(6)

By the same arguments,

$$\begin{aligned} \begin{aligned} &\frac{\partial c^{*}_{n} (f(\boldsymbol {x}), r )}{\partial x_{2}}= c^{*}_{n} \bigl(f(\boldsymbol {x}), r \bigr) \\ &\hphantom{\frac{\partial c^{*}_{n} (f(\boldsymbol {x}), r )}{\partial x_{2}}}= c^{*}_{n} \bigl(f(\boldsymbol {x}), r \bigr) \biggl( \sum _{{k+k_{3}+\cdots +k_{n}=r \atop k\neq 0}} \frac{kf'(x_{2})}{k f(x_{2})+\sum_{j=3}^{n}i_{j}f(x_{j})} \\ &\hphantom{\frac{\partial c^{*}_{n} (f(\boldsymbol {x}), r )}{\partial x_{2}}=}{}+\sum_{{k+m+i_{3}+\cdots +i_{n}=r \atop k\neq 0, m\neq 0 }} \frac{kf'(x_{2})}{k f(x_{2})+m f(x_{1})+\sum_{j=3}^{n}i_{j}f(x_{j})} \biggr), \\ &\frac{\partial c^{*}_{n} (f(\boldsymbol {x}), r )}{\partial x_{1}}- \frac{\partial c^{*}_{n} (f(\boldsymbol {x}), r )}{\partial x_{2}}=c^{*}_{n} \bigl(f(\boldsymbol {x}), r \bigr) (A_{1}+A_{2}), \end{aligned} \end{aligned}$$
(7)

where

$$\begin{aligned} A_{1} &=\sum_{{k+k_{3}+\cdots +k_{n}=r \atop k\neq 0}} \biggl( \frac{kf'(x_{1})}{k f(x_{1})+\sum_{j=3}^{n}i_{j}f(x_{j})}- \frac{kf'(x_{2})}{k f(x_{2})+\sum_{j=3}^{n}i_{j}f(x_{j})} \biggr) \\ &= k\sum_{{k+k_{3}+\cdots +k_{n}=r \atop k\neq 0}} \frac{k(f(x_{2})f'(x_{1})-f(x_{1})f'(x_{2}))+(f'(x_{1})-f'(x_{2}))\sum_{j=3}^{n}i_{j}f(x_{j})}{(k f(x_{1})+\sum_{j=3}^{n}i_{j}f(x_{j}))(k f(x_{2})+\sum_{j=3}^{n}i_{j}f(x_{j}))} \end{aligned}$$
(8)

and

$$\begin{aligned} A_{2}&=\sum_{{k+m+i_{3}+\cdots +i_{n}=r \atop k\neq 0, m\neq 0 }} \biggl( \frac{kf'(x_{1})}{k f(x_{1})+m f(x_{2})+\sum_{j=3}^{n}i_{j}f(x_{j})}- \frac{kf'(x_{2})}{k f(x_{2})+m f(x_{1})+\sum_{j=3}^{n}i_{j}f(x_{j})} \biggr) \\ &= k \sum_{{k+m+i_{3}+\cdots +i_{n}=r \atop k\neq 0, m\neq 0 }} \frac{\delta }{(k f(x_{1})+m f(x_{2})+\sum_{j=3}^{n}i_{j}f(x_{j}))(k f(x_{2})+m f(x_{1})+\sum_{j=3}^{n}i_{j}f(x_{j}))} \end{aligned}$$

where

$$\begin{aligned} \delta ={}& k\bigl(f(x_{2})f'(x_{1})-f(x_{1})f'(x_{2}) \bigr)+ m\bigl(f(x_{1})f'(x_{1})-f(x_{2})f'(x_{2}) \bigr) \\ &{}+\bigl(f'(x_{1})-f'(x_{2}) \bigr) \sum_{j=3}^{n}i_{j}f(x_{j}). \end{aligned}$$
  1. (a)

    Since the log-convex function must be convex function, so \(f'(x_{1})-f'(x_{2})\geq 0\) and \(f(x_{2})f'(x_{1})-f(x_{1})f'(x_{2})\geq 0\), and since \((f(x)f'(x))'= (f'(x))^{2}+f(x)f''(x)\geq 0\), so \(f(x_{1})f'(x_{1})-f(x_{2})f'(x_{2})\geq 0\), and then \(A_{1} \geq 0\) and \(A_{2} \geq 0\). For \(\boldsymbol {x}\in I^{n}\), we have

    $$ \frac{\partial c^{*}_{n} (f(\boldsymbol {x}), r )}{\partial x_{1}}- \frac{\partial c^{*}_{n} (f(\boldsymbol {x}), r )}{\partial x_{2}} \geq 0, $$

    by Lemma 1, it follows that \(c^{*}_{n} (f(\boldsymbol {x}), r )\) is Schur-convex on \(I^{n}\).

  2. (b)

    By Proposition 4, we know that \(c^{*}_{n}(\boldsymbol {x},r)\) is increasing and Schur-concave on \(\mathbb{R}^{n}_{+}\). Since f is concave, from (b) in Lemma 4 it follows that \(c^{*}_{n} (f(\boldsymbol {x}), r )\) is Schur-concave on \(I^{n}\).

The proof of Theorem 1 is completed. □

Proof of Theorem 2

Theorem 2 can be proved by Theorem 1 combined with Lemma 3.

The proof of Theorem 2 is completed. □

Proof of Theorem 3

Theorem 3 can be proved by Theorem 1 combined with Lemma 4.

The proof of Theorem 3 is completed. □

4 Applications

Let

$$ c^{*}_{n} \biggl(\frac{1}{\boldsymbol {x}},r \biggr)=\prod _{i_{1}+ i_{2}+ \cdots +i_{n}=r}\sum^{n}_{ j=1}i_{j} \biggl(\frac{1}{x_{j}} \biggr). $$
(9)

Theorem 4

The symmetric function\(c^{*}_{n} (\frac{1}{\boldsymbol {x}},r )\)is Schur-convex on\(\mathbb{R}^{n}_{+}\). Ifris an even integer (or odd integer, respectively ), then\(c^{*}_{n} (\frac{1}{\boldsymbol {x}},r )\)is Schur-convex (or Schur-concave, respectively) on\(\mathbb{R}^{n}_{-}\).

Proof

Let \(f(x)=\frac{1}{x}\). Then \((\ln f(x))'' = \frac{1}{x^{2}}\), so \(f(x)\) is log-convex on \(\mathbb{R}_{+}\), by (a) in Theorem 1, it follows that \(c^{*}_{n} (\frac{1}{\boldsymbol {x}},r )\) is Schur-convex on \(\mathbb{R}^{n}_{+}\).

For \(\boldsymbol {x}\in \mathbb{R}^{n}_{-}\), \(-\boldsymbol {x}\in \mathbb{R}^{n}_{+}\), so \(c^{*}_{n} (\frac{1}{-\boldsymbol {x}},r )\) is Schur-convex on \(\mathbb{R}^{n}_{-}\). But

$$ c^{*}_{n} \biggl(\frac{1}{-\boldsymbol {x}},r \biggr)= (-1)^{r} c^{*}_{n} \biggl( \frac{1}{\boldsymbol {x}},r \biggr). $$

This means that if r is an even integer, then

$$ c^{*}_{n} \biggl(\frac{1}{\boldsymbol {x}},r \biggr)= c^{*}_{n} \biggl( \frac{1}{-\boldsymbol {x}},r \biggr) $$

is Schur-convex on \(\mathbb{R}^{n}_{-}\).

If r is an odd integer, then

$$ c^{*}_{n} \biggl(\frac{1}{\boldsymbol {x}},r \biggr)= -c^{*}_{n} \biggl( \frac{1}{-\boldsymbol {x}},r \biggr) $$

is Schur-concave on \(\mathbb{R}^{n}_{-}\).

The proof of Theorem 4 is completed. □

By Theorem 4 and majorizing relation (7), it is not difficult to prove the following corollary.

Corollary 1

If\(\boldsymbol {x} \in \mathbb{R}^{n}_{+}\)orris an even integer and\(\boldsymbol {x} \in \mathbb{R}^{n}_{-}\), then we have

$$ \prod_{i_{1}+ i_{2}+\cdots +i_{n}=r}\sum^{n}_{ j=1}i_{j} \biggl(\frac{1}{x_{j}} \biggr)\geq \biggl(\frac{r}{A_{n}(\boldsymbol {x})} \biggr)^{\binom{n+r-1}{r}}, $$
(10)

where\(A_{n}(\boldsymbol {x})= \frac{1}{n}\sum^{n}_{i=1}x_{i}\)and(n+r1r)=(n+r1)!r!((n+r1)r)!. Ifris odd and\(\boldsymbol {x} \in \mathbb{R}^{n}_{-}\), then inequality (10) is reversed.

Let

$$ c^{*}_{n} \biggl(\frac{\boldsymbol {x}}{1-\boldsymbol {x}},r \biggr)=\prod _{i_{1}+ i_{2}+\cdots +i_{n}=r}\sum^{n}_{ j=1}i_{j} \biggl( \frac{x_{j}}{1-x_{j}} \biggr). $$
(11)

Theorem 5

The symmetric function\(c^{*}_{n} (\frac{\boldsymbol {x}}{1-\boldsymbol {x}},r )\)is Schur-convex, Schur-geometrically convex, and Schur-harmonically convex on\([\frac{1}{2}, 1]^{n}\).

Proof

Let \(g(x)=\frac{x}{1-x}\). Then \((\ln g(x))'' = \frac{2x-1}{x^{2}(1-x)^{2}}\), so \(f(x)\) is log-convex on \([\frac{1}{2}, 1]\); by Theorem 1(a), it follows that \(c^{*}_{n} (\frac{\boldsymbol {x}}{1-\boldsymbol {x}},r )\) is Schur-convex on \([\frac{1}{2}, 1]^{n}\). Noting that \(g(x)\) is increasing on \([\frac{1}{2}, 1]\), by (a) in Theorem 2 and (a) in Theorem 3, it follows that \(c^{*}_{n} (\frac{\boldsymbol {x}}{1-\boldsymbol {x}},r )\) is Schur-geometrically convex and Schur-harmonically convex on \([\frac{1}{2}, 1]^{n}\).

The proof of Theorem 5 is completed. □

From the majorizing relation (7), the following majorizing relation is established:

$$ \bigl(\log G_{n}(\boldsymbol {x}), \log G_{n}(\boldsymbol {x}), \ldots , \log G_{n}( \boldsymbol {x}) \bigr)\prec (\log x_{1}, \log x_{2},\ldots ,\log x_{n} ). $$

By this majorizing relation and Theorem 5, it is not difficult to prove the following corollary.

Corollary 2

If\(\boldsymbol {x} \in [\frac{1}{2}, 1]^{n}\), then we have

$$ \prod_{i_{1}+ i_{2}+\cdots +i_{n}=r}\sum^{n}_{ j=1}i_{j} \biggl(\frac{x_{j}}{1-x_{j}} \biggr)\geq \biggl( \frac{rG_{n}(\boldsymbol {x})}{1-G_{n}(\boldsymbol {x})} \biggr)^{\binom{n+r-1}{r}}, $$
(12)

where\(G_{n}(\boldsymbol {x})=\sqrt[n]{\prod^{n}_{i=1}x_{i}}\).

Let

$$ c^{*}_{n} \biggl(\frac{1+\boldsymbol {x}}{1-\boldsymbol {x}},r \biggr)=\prod _{i_{1}+ i_{2}+\cdots +i_{n}=r}\sum^{n}_{ j=1}i_{j} \biggl( \frac{1+x_{j}}{1-x_{j}} \biggr). $$
(13)

Theorem 6

  1. (a)

    The symmetric function\(c^{*}_{n} (\frac{1+\boldsymbol {x}}{1-\boldsymbol {x}},r )\)is Schur-convex, Schur-geometrically convex, and Schur-harmonically convex on\((0,1)^{n}\).

  2. (b)

    Ifris an even integer (or odd integer, respectively ), then\(c^{*}_{n} (\frac{1+\boldsymbol {x}}{1-\boldsymbol {x}},r )\)is Schur-convex (or Schur-concave, respectively) on\((1, +\infty )^{n}\).

Proof

(a) Let \(h(x)=\frac{1+x}{1-x}\). Then \((\ln h(x))'' = \frac{4x}{(1+x)^{2}(1-x)^{2}}\), so \(f(x)\) is log-convex on \((0,1)\), by Theorem 1(a), it follows that \(c^{*}_{n} (\frac{1+\boldsymbol {x}}{1-\boldsymbol {x}},r )\) is Schur-convex on \((0,1)^{n}\). Noting that \(h(x)\) is increasing on \((0,1)^{n}\), by (a) in Theorem 2 and (a) in Theorem 3, it follows that \(c^{*}_{n} (\frac{1+\boldsymbol {x}}{1-\boldsymbol {x}},r )\) is Schur-geometrically convex and Schur-harmonically convex on \((0,1)^{n}\).

(b) For \(\boldsymbol {x} \in (1, + \infty )\), we consider

$$ c^{*}_{n} \biggl(\frac{1+\boldsymbol {x}}{\boldsymbol {x}-1},r \biggr)=\prod _{i_{1}+ i_{2}+\cdots +i_{n}=r}\sum^{n}_{ j=1}i_{j} \biggl( \frac{1+x_{j}}{x_{j}-1} \biggr). $$
(14)

Let \(h_{1}(x)=\frac{1+x}{x-1}\). Then \((\ln h_{1}(x))'' = \frac{4x}{(1+x)^{2}( x-1)^{2}}\), so \(f(x)\) is log-convex on \((1, + \infty )\), by (a) in Theorem 1, it follows that \(c^{*}_{n} (\frac{1+\boldsymbol {x}}{\boldsymbol {x}-1},r )\) is Schur-convex on \((1, + \infty )^{n}\).

Noting that

$$ c^{*}_{n} \biggl(\frac{1+\boldsymbol {x}}{1-\boldsymbol {x}},r \biggr)=(-1)^{r} c^{*}_{n} \biggl( \frac{1+\boldsymbol {x}}{\boldsymbol {x}-1},r \biggr), $$

combining the Schur-convexity of \(c^{*}_{n} (\frac{1+\boldsymbol {x}}{\boldsymbol {x}-1},r )\), we can get (b) in Theorem 6.

The proof of Theorem 6 is completed. □

Let

$$ c^{*}_{n} \biggl(\frac{1}{\boldsymbol {x}}-\boldsymbol {x},r \biggr)= \prod_{i_{1}+ i_{2}+\cdots +i_{n}=r}\sum^{n}_{ j=1}i_{j} \biggl(\frac{1}{x_{j}}-x_{j} \biggr). $$
(15)

Theorem 7

  1. (a)

    Ifris an even integer (or odd integer, respectively), then\(c^{*}_{n} (\frac{1}{\boldsymbol {x}}-\boldsymbol {x},r )\)is Schur-concave (or Schur-convex, respectively) on\(\mathbb{R}^{n}_{+}\).

  2. (b)

    The symmetric function\(c^{*}_{n} (\frac{1}{\boldsymbol {x}}-\boldsymbol {x},r )\)is Schur-concave on\(\mathbb{R}^{n}_{-}\).

  3. (c)

    Ifris an even integer, then\(c^{*}_{n} (\frac{1}{\boldsymbol {x}}-\boldsymbol {x},r )\)is Schur-geometrically concave and Schur-harmonically concave on\((-\infty ,1]^{n}\).

Proof

First consider

$$ c^{*}_{n} \biggl(\boldsymbol {x}-\frac{1}{\boldsymbol {x}},r \biggr)= \prod_{i_{1}+ i_{2}+\cdots +i_{n}=r}\sum^{n}_{ j=1}i_{j} \biggl(x_{j}- \frac{1}{x_{j}} \biggr). $$
  1. (a)

    Let \(p(x)=x-\frac{1}{x}\). Then \(p''(x) = -\frac{2}{x^{3}}\), so \(f(x)\) is concave on \(\mathbb{R}_{+}\), by Theorem 1(b), it follows that \(c^{*}_{n} (\boldsymbol {x}-\frac{1}{\boldsymbol {x}},r )\) is Schur-concave on \(\mathbb{R}^{n}_{+}\).

    Noting that

    $$ c^{*}_{n} \biggl(\frac{1}{\boldsymbol {x}}-\boldsymbol {x},r \biggr)=(-1)^{n} c^{*}_{n} \biggl(\boldsymbol {x}- \frac{1}{\boldsymbol {x}},r \biggr), $$

    combining the Schur-concavity of \(c^{*}_{n} (\frac{1}{\boldsymbol {x}}-\boldsymbol {x},r )\), we can get (a) in Theorem 7.

  2. (b)

    Noting that

    $$ c^{*}_{n} \biggl(\frac{1}{-\boldsymbol {x}}-(-\boldsymbol {x}),r \biggr)= (-1)^{r} c^{*}_{n} \biggl( \frac{1}{\boldsymbol {x}}-\boldsymbol {x},r \biggr), $$

    combining (a) in Theorem 7, it is not difficult to verify that (b) in Theorem 7 holds.

  3. (c)

    It is not difficult to verify that \(p(x)=x-\frac{1}{x}\) is nonnegative and decreasing on \((-\infty , 1]\), by Lemma 5 and Lemma 6, from (a) and (b) in Theorem 7, it follows that (c) in Theorem 7 holds.

The proof of Theorem 7 is completed. □

For \(u >1\), let

$$ c^{*}_{n} \biggl(\frac{u^{\boldsymbol {x}}-1}{\boldsymbol {x}},r \biggr)=\prod _{i_{1}+ i_{2}+\cdots +i_{n}=r}\sum^{n}_{ j=1}i_{j} \biggl( \frac{u^{x_{j}}-1}{x_{j}} \biggr). $$
(16)

Theorem 8

The symmetric function\(c^{*}_{n} (\frac{u^{\boldsymbol {x}}-1}{\boldsymbol {x}},r )\)is Schur-convex, Schur-geometrically convex, and Schur-harmonically convex on\(\mathbb{R}^{n}_{+}\)for\(u>1\).

Proof

Let \(q(t)=\frac{u^{t}-1}{t}\). Then from Lemma 6 and (a) in Theorem 1, it follows that \(c^{*}_{n} (\frac{u^{\boldsymbol {x}}-1}{\boldsymbol {x}},r )\) is Schur-convex on \(\mathbb{R}^{n}_{+}\) for \(u>1\).

Since

$$ q'(t)= \frac{s(t)}{t^{2}}, $$

where \(s(t)=u^{t}(t\log u-1)+1\), \(s'(t)=u^{t}\log u\log u^{t}>0\), for \(u>1\) and \(t>0\), so \(s(t)\geq s(0)=0\), and then \(q'(t)\geq 0\), that is, \(q(t)\) is increasing on \(\mathbb{R}^{n}_{+}\), by (a) in Theorem 2 and (a) in Theorem 3, it follows that \(c^{*}_{n} (\frac{u^{\boldsymbol {x}}-1}{\boldsymbol {x}},r )\) is Schur-geometrically convex and Schur-harmonically convex on \(\mathbb{R}^{n}_{+}\).

The proof of Theorem 8 is completed. □

From the majorizing relation (7), the following majorizing relation is established:

$$ \biggl(\frac{1}{H_{n}(\boldsymbol {x})}, \frac{1}{H_{n}(\boldsymbol {x})}, \ldots , \frac{1}{H_{n}(\boldsymbol {x})} \biggr)\prec \biggl(\frac{1}{x_{1}}, \frac{1}{x_{2}},\ldots ,\frac{1}{x_{n}} \biggr). $$

By this majorizing relation and Theorem 8, it is not difficult to prove the following corollary.

Corollary 3

If\(\boldsymbol {x}=(x_{1}, x_{2},\ldots ,x_{n}) \in \mathbb{R}^{n}_{+}\)and\(u>1\), then

$$ \prod_{i_{1}+ i_{2}+\cdots +i_{n}=r}\sum^{n}_{ j=1}i_{j} \biggl(\frac{u^{x_{j}}-1}{x_{j}} \biggr)\geq \biggl( \frac{r(u^{H_{n}(\boldsymbol {x})}-1)}{H_{n}(\boldsymbol {x})} \biggr)^{\binom{n+r-1}{r}}, $$
(17)

where\(H_{n}(\boldsymbol {x})= \frac{n}{\sum^{n}_{i=1}x^{-1}_{i}}\).

Discovering and judging Schur convexity of various symmetric functions is an important subject in the study of the majorization theory. In recent years, many domestic scholars have made a lot of achievements in this field (see [2430]).