1 Introduction

Throughout the article, ℝ denotes the set of real numbers, x=( x 1 , x 2 ,, x n ) denotes n-tuple (n-dimensional real vectors), the set of vectors can be written as

R n = { x = ( x 1 , , x n ) : x i R , i = 1 , , n } , R + n = { x = ( x 1 , , x n ) : x i > 0 , i = 1 , , n } .

In particular, the notations ℝ and R + denote R 1 and R + 1 , respectively.

For convenience, we introduce some definitions as follows.

Definition 1 [1, 2]

Let x=( x 1 ,, x n ) and y=( y 1 ,, y n ) R n .

  1. (i)

    xy means x i y i for all i=1,2,,n.

  2. (ii)

    Let Ω R n , φ:ΩR is said to be increasing if xy implies φ(x)φ(y). φ is said to be decreasing if and only if −φ is increasing.

Definition 2 [1, 2]

Let x=( x 1 ,, x n ) and y=( y 1 ,, y n ) R n .

  1. (i)

    x is said to be majorized by y (in symbols xy) if i = 1 k x [ i ] i = 1 k y [ i ] for k=1,2,,n1 and i = 1 n x i = i = 1 n y i , where x [ 1 ] x [ n ] and y [ 1 ] y [ n ] are rearrangements of x and y in a descending order.

  2. (ii)

    Let Ω R n , φ:ΩR is said to be a Schur-convex function on Ω if xy on Ω implies φ(x)φ(y). φ is said to be a Schur-concave function on Ω if and only if −φ is Schur-convex function on Ω.

Definition 3 [1, 2]

Let x=( x 1 ,, x n ) and y=( y 1 ,, y n ) R n .

  1. (i)

    Ω R n is said to be a convex set if x,yΩ, 0α1 implies αx+(1α)y=(α x 1 +(1α) y 1 ,,α x n +(1α) y n )Ω.

  2. (ii)

    Let Ω R n be a convex set. A function φ:ΩR is said to be a convex function on Ω if

    φ ( α x + ( 1 α ) y ) αφ(x)+(1α)φ(y)

for all x,yΩ and all α[0,1]. φ is said to be a concave function on Ω if and only if −φ is a convex function on Ω.

  1. (iii)

    Let Ω R n . A function φ:ΩR is said to be a log-convex function on Ω if the function lnφ is convex.

Definition 4 [1]

  1. (i)

    Ω R n is called a symmetric set, if xΩ implies PxΩ for every n×n permutation matrix P.

  2. (ii)

    The function φ:ΩR is called symmetric if for every permutation matrix P, φ(Px)=φ(x) for all xΩ.

Theorem A (Schur-convex function decision theorem [[1], p.84])

Let Ω R n be symmetric and have a nonempty interior convex set. Ω 0 is the interior of Ω. φ:ΩR is continuous on Ω and differentiable in Ω 0 . Then φ is the Schur-convex (Schur-concave) function if and only if φ is symmetric on Ω and

( x 1 x 2 ) ( φ x 1 φ x 2 ) 0(0)
(1)

holds for any x Ω 0 .

The Schur-convex functions were introduced by Schur in 1923 and have important applications in analytic inequalities, elementary quantum mechanics and quantum information theory. See [1].

In recent years, many scholars use the Schur-convex function decision theorem to determine the Schur-convexity of many symmetric functions.

Xia et al. [3] proved that the symmetric function

E k ( x 1 + x ) = 1 i 1 < < i k n j = 1 k x i j 1 + x i j ,k=1,,n,
(2)

is Schur-convex on R + n .

Chu et al. [4] proved that the symmetric function

E k ( x 1 x ) = 1 i 1 < < i k n j = 1 k x i j 1 x i j ,k=1,,n,
(3)

is Schur-convex on [ k 1 2 ( n 1 ) , 1 ) n and Schur-concave on [ 0 , k 1 2 ( n 1 ) ] n .

Xia and Chu [5] proved that the symmetric function

E k ( 1 x x ) = 1 i 1 < < i k n j = 1 k 1 x i j x i j ,k=1,,n,
(4)

is Schur-convex on ( 0 , 2 n k 1 2 ( n 1 ) ] n and Schur-concave on [ 2 n k 1 2 ( n 1 ) , 1 ] n .

Xia and Chu [6] also proved that the symmetric function

E k ( 1 + x 1 x ) = 1 i 1 < < i k n j = 1 k 1 + x i j 1 x i j ,k=1,,n,
(5)

is Schur-convex on ( 0 , 1 ) n .

Mei et al. [7] proved that the symmetric function

E k ( 1 x x ) = 1 i 1 < < i k n j = 1 k ( 1 x i j x i j ) ,k=1,,n,
(6)

is Schur-convex on ( 0 , 1 ) n . More results for Schur convexity of the symmetric functions, we refer the reader to [8].

In this paper, by the properties of a Schur-convex function, we study Schur-convexity of the dual form of the above symmetric functions, and we obtained the following results.

Theorem 1 The symmetric function

E k ( x 1 + x ) = 1 i 1 < < i k n j = 1 k x i j 1 + x i j ,k=1,,n,
(7)

is a Schur-concave function on R + n .

Theorem 2 The symmetric function

E k ( x 1 x ) = 1 i 1 < < i k n j = 1 k x i j 1 x i j ,k=1,,n,
(8)

is a Schur-convex function on [ 1 2 , 1 ) n .

Theorem 3 The symmetric function

E k ( 1 x x ) = 1 i 1 < < i k n j = 1 k 1 x i j x i j ,k=1,,n,
(9)

is a Schur-convex function on ( 0 , 1 2 ] n .

Theorem 4 The symmetric function

E k ( 1 + x 1 x ) = 1 i 1 < < i k n j = 1 k 1 + x i j 1 x i j ,k=1,,n,
(10)

is a Schur-convex function on ( 0 , 1 ) n .

Theorem 5 The symmetric function

E k ( 1 x x ) = 1 i 1 < < i k n j = 1 k ( 1 x i j x i j ) ,k=1,,n,
(11)

is a Schur-convex function on ( 0 , 5 2 ) n .

2 Lemmas

To prove the above three theorems, we need the following lemmas.

Lemma 1 ([[1], p.97], [2])

If φ is symmetric and convex (concave) on a symmetric convex set Ω, then φ is Schur-convex (Schur-concave) on Ω.

Lemma 2 [[2], p.64]

Let Ω R n , φ:Ω R + . Then logφ is Schur-convex (Schur-concave) if and only if φ is Schur-convex (Schur-concave).

Lemma 3 ([[1], p.642], [2])

Let Ω R n be an open convex set, φ:ΩR. For x,yΩ, define one variable function g(t)=φ(tx+(1t)y) on the interval (0,1). Then φ is convex (concave) on Ω if and only if g is convex (concave) on [0,1] for all x,yΩ.

Lemma 4 Let x=( x 1 ,, x m ) and y=( y 1 ,, y m ) R + m . Then the function p(t)=logg(t) is concave on [0,1], where

g(t)= j = 1 m t x j + ( 1 t ) y j 1 + t x j + ( 1 t ) y j .

Proof

p (t)= g ( t ) g ( t ) ,

where

g ( t ) = j = 1 m x j y j ( 1 + t x j + ( 1 t ) y j ) 2 , p ( t ) = g ( t ) g ( t ) ( g ( t ) ) 2 g 2 ( t ) ,

where

g (t)= j = 1 m 2 ( x j y j ) 2 ( 1 + t x j + ( 1 t ) y j ) 3 .

Thus,

g ( t ) g ( t ) ( g ( t ) ) 2 = ( j = 1 m 2 ( x j y j ) 2 ( 1 + t x j + ( 1 t ) y j ) 3 ) ( j = 1 m t x j + ( 1 t ) y j 1 + t x j + ( 1 t ) y j ) ( j = 1 m x j y j ( 1 + t x j + ( 1 t ) y j ) 2 ) 2 0 ,

and then p (t)0, that is, p(t) is concave on [0,1].

The proof of Lemma 4 is completed. □

Lemma 5 Let x=( x 1 ,, x m ) and y=( y 1 ,, y m ) [ 1 2 , 1 ) m . Then the function q(t)=logψ(t) is convex on [0,1], where

ψ(t)= j = 1 m t x j + ( 1 t ) y j 1 t x j ( 1 t ) y j .

Proof

q (t)= ψ ( t ) ψ ( t ) ,

where

ψ ( t ) = j = 1 m x j y j ( 1 t x j ( 1 t ) y j ) 2 , q ( t ) = ψ ( t ) ψ ( t ) ( ψ ( t ) ) 2 ψ 2 ( t ) ,

where

ψ (t)= j = 1 m 2 ( x j y j ) 2 ( 1 t x j ( 1 t ) y j ) 3 .

By the Cauchy inequality, we have

ψ ( t ) ψ ( t ) ( ψ ( t ) ) 2 = ( j = 1 m 2 ( x j y j ) 2 ( 1 t x j ( 1 t ) y j ) 3 ) ( j = 1 m t x j + ( 1 t ) y j 1 t x j ( 1 t ) y j ) ( j = 1 m x j y j ( 1 t x j ( 1 t ) y j ) 2 ) 2 ( j = 1 m 2 | x j y j | ( 1 t x j ( 1 t ) y j ) 3 2 t x j + ( 1 t ) y j 1 t x j ( 1 t ) y j ) 2 ( j = 1 m x j y j ( 1 t x j ( 1 t ) y j ) 2 ) 2 = ( j = 1 m 2 | x j y j | t x j + ( 1 t ) y j ( 1 t x j ( 1 t ) y j ) 2 ) 2 ( j = 1 m x j y j ( 1 t x j ( 1 t ) y j ) 2 ) 2 .

From x j , y j [ 1 2 ,1) it follows that 2 t x j + ( 1 t ) y j 1, hence ψ (t)ψ(t) ( ψ ( t ) ) 2 0, and then q (t)0, that is, q(t) is convex on [0,1].

The proof of Lemma 5 is completed. □

Lemma 6 Let x=( x 1 ,, x m ) and y=( y 1 ,, y m ) ( 0 , 1 2 ] m . Then the function r(t)=logφ(t) is convex on [0,1], where

φ(t)= j = 1 m 1 t x j ( 1 t ) y j t x j + ( 1 t ) y j .

Proof

r (t)= φ ( t ) φ ( t ) ,

where

φ ( t ) = j = 1 m x j y j ( t x j + ( 1 t ) y j ) 2 , r ( t ) = φ ( t ) φ ( t ) ( φ ( t ) ) 2 φ 2 ( t ) ,

where

φ (t)= j = 1 m 2 ( x j y j ) 2 ( t x j + ( 1 t ) y j ) 3 .

By the Cauchy inequality, we have

φ ( t ) φ ( t ) ( φ ( t ) ) 2 = ( j = 1 m 2 ( x j y j ) 2 ( t x j + ( 1 t ) y j ) 3 ) ( j = 1 m 1 t x j ( 1 t ) y j t x j + ( 1 t ) y j ) ( j = 1 m x j y j ( t x j + ( 1 t ) y j ) 2 ) 2 ( j = 1 m 2 | x j y j | ( t x j + ( 1 t ) y j ) 3 2 1 t x j ( 1 t ) y j t x j + ( 1 t ) y j ) 2 ( j = 1 m x j y j ( t x j + ( 1 t ) y j ) 2 ) 2 = ( j = 1 m 2 | x j y j | 1 t x j ( 1 t ) y j ( t x j + ( 1 t ) y j ) 2 ) 2 ( j = 1 m x j y j ( t x j + ( 1 t ) y j ) 2 ) 2 .

From x j , y j (0, 1 2 ] it follows that 2 1 t x j ( 1 t ) y j 1, hence φ (t)φ(t) ( φ ( t ) ) 2 0, and then r (t)0, that is, r(t) is convex on [0,1].

The proof of Lemma 6 is completed. □

Lemma 7 Let x=( x 1 ,, x m ) and y=( y 1 ,, y m ) ( 0 , 1 ) m . Then the function h(t)=logf(t) is convex on [0,1], where

f(t)= j = 1 m 1 + t x j + ( 1 t ) y j 1 t x j ( 1 t ) y j .

Proof

h (t)= f ( t ) f ( t ) ,

where

f ( t ) = j = 1 m 2 ( x j y j ) ( 1 t x j ( 1 t ) y j ) 2 , h ( t ) = f ( t ) f ( t ) ( f ( t ) ) 2 f 2 ( t ) ,

where

f (t)= j = 1 m 4 ( x j y j ) 2 ( 1 t x j ( 1 t ) y j ) 3 .

By the Cauchy inequality, we have

f ( t ) f ( t ) ( f ( t ) ) 2 = ( j = 1 m 4 ( x j y j ) 2 ( 1 t x j ( 1 t ) y j ) 3 ) ( j = 1 m 1 + t x j + ( 1 t ) y j 1 t x j ( 1 t ) y j ) ( j = 1 m 2 ( x j y j ) ( 1 t x j ( 1 t ) y j ) 2 ) 2 ( j = 1 m 2 | x j y j | ( 1 t x j ( 1 t ) y j ) 3 2 1 + t x j + ( 1 t ) y j 1 t x j ( 1 t ) y j ) 2 ( j = 1 m 2 ( x j y j ) ( 1 t x j ( 1 t ) y j ) 2 ) 2 = ( j = 1 m 2 | x j y j | 1 + t x j + ( 1 t ) y j ( 1 t x j ( 1 t ) y j ) 2 ) 2 ( j = 1 m 2 ( x j y j ) ( 1 t x j ( 1 t ) y j ) 2 ) 2 .

From x j , y j (0,1) it follows that 2 1 + t x j + ( 1 t ) y j 1, hence f (t)f(t) ( f ( t ) ) 2 0, and then h (t)0, that is, h(t) is convex on [0,1].

The proof of Lemma 7 is completed. □

Lemma 8 Let x=( x 1 ,, x m ) and y=( y 1 ,, y m ) ( 0 , 5 2 ) m . Then the function s(t)=logw(t) is convex on [0,1], where

w(t)= j = 1 m ( 1 t x j + ( 1 t ) y j ( t x j + ( 1 t ) y j ) ) .

Proof

s (t)= w ( t ) w ( t ) ,

where

w ( t ) = j = 1 m ( x j y j ) ( 1 ( t x j + ( 1 t ) y j ) 2 + 1 ) , s ( t ) = w ( t ) w ( t ) ( w ( t ) ) 2 w 2 ( t ) ,

where

w (t)= j = 1 m 2 ( x j y j ) 2 ( t x j + ( 1 t ) y j ) 3 .

By the Cauchy inequality, we have

w ( t ) w ( t ) ( w ( t ) ) 2 = ( j = 1 m 2 ( x j y j ) 2 ( t x j + ( 1 t ) y j ) 3 ) ( j = 1 m ( 1 t x j + ( 1 t ) y j ( t x j + ( 1 t ) y j ) ) ) ( j = 1 m ( x j y j ) ( 1 ( t x j + ( 1 t ) y j ) 2 + 1 ) ) 2 ( j = 1 m 2 | x j y j | ( t x j + ( 1 t ) y j ) 3 2 1 t x j + ( 1 t ) y j ( t x j + ( 1 t ) y j ) ) 2 ( j = 1 m ( x j y j ) ( 1 ( t x j + ( 1 t ) y j ) 2 + 1 ) ) 2 = ( j = 1 m 2 | x j y j | 1 ( t x j + ( 1 t ) y j ) 2 ( t x j + ( 1 t ) y j ) 2 ) 2 ( j = 1 m ( x j y j ) 1 + ( t x j + ( 1 t ) y j ) 2 ( t x j + ( 1 t ) y j ) 2 ) 2 .

Let u j :=t x j +(1t) y j . From x j , y j (0, 5 2 ) it follows that u j 2 5 2. Since

u j 2 5 2 ( u j 2 + 2 ) 2 5 u j 4 + 4 u j 2 1 0 2 ( 1 u j 2 ) ( 1 + u j 2 ) 2 2 1 u j 2 1 + u j 2 ,

so w (t)w(t) ( w ( t ) ) 2 0, and then s (t)0, that is, s(t) is convex on [0,1].

The proof of Lemma 8 is completed. □

3 Proof of main results

Proof of Theorem 4 For any 1 i 1 << i k n, by Lemma 3 and Lemma 7, it follows that log j = 1 k 1 + x i j 1 x i j is convex on ( 0 , 1 ) k . Obviously, log j = 1 k 1 + x i j 1 x i j is also convex on ( 0 , 1 ) n , and then log E k ( 1 + x 1 x )= 1 i 1 < < i k n log j = 1 k 1 + x i j 1 x i j is convex on ( 0 , 1 ) n . Furthermore, it is clear that log E k ( 1 + x 1 x ) is symmetric on ( 0 , 1 ) n . By Lemma 1, it follows that log E k ( 1 + x 1 x ) is Schur-convex on ( 0 , 1 ) n , and then from Lemma 2 we conclude that E k ( 1 + x 1 x ) is also Schur-convex on ( 0 , 1 ) n .

The proof of Theorem 4 is completed. □

Similar to the proof of Theorem 4, we can use Lemma 4, Lemma 5, Lemma 6 and Lemma 8 respectively to prove Theorem 1, Theorem 2, Theorem 3 and Theorem 5; therefore we omit the details of the proof.

Remark 1 Using the Schur-convex function decision theorem, Liu et al. [9] have proved Theorem 3. Xia and Chu [10] have proved that the symmetric function

E k ( 1 + x x ) = 1 i 1 < < i k n j = 1 k 1 + x i j x i j ,k=1,,n,
(12)

is a Schur-convex function on R + n .

The reader may wish to prove the inequality (12) by the properties of a Schur-convex function.