Skip to main content
Log in

Schur convexity for two classes of symmetric functions and their applications

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

For x = (x 1, x 2, ⋯, x n ) ∈ ℝ n+ ∪ ℝ n , the symmetric functions F n (x, r) and G n (x, r) are defined by

$$F_n (x,r) = F_n (x_1 ,x_2 , \cdots ,x_n ;r) = \sum\limits_{1 \leqslant i_1 < i_2 < \cdots < i_r \leqslant n} {\prod\limits_{j = 1}^r {\frac{{1 + x_{i_j } }} {{x_{i_j } }}} }$$

and

$$G_n (x,r) = G_n (x_1 ,x_2 , \cdots ,x_n ;r) = \sum\limits_{1 \leqslant i_1 < i_2 < \cdots < i_r \leqslant n} {\prod\limits_{j = 1}^r {\frac{{1 - x_{i_j } }} {{x_{i_j } }}} } ,$$

respectively, where r = 1, 2, ⋯, n, and i 1, i 2, ⋯, i n are positive integers. In this paper, the Schur convexity of F n (x, r) and G n (x, r) are discussed. As applications, by a bijective transformation of independent variable for a Schur convex function, the authors obtain Schur convexity for some other symmetric functions, which subsumes the main results in recent literature; and by use of the theory of majorization establish some inequalities. In particular, the authors derive from the results of this paper the Weierstrass inequalities and the Ky Fan’s inequality, and give a generalization of Safta’s conjecture in the n-dimensional space and others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schur, I., Uber eine klasse von mittelbildungen mit anwendungen auf der determinantentheorie, Sitzungsberichte der Berliner Mathematischen Gesellschaft, 22, 1923, 9–20.

    Google Scholar 

  2. Wang, B. Y., Foundations of Majorization Inequalities, Beijing Normal Univ. Press, Beijing, 1990 (in Chinese).

    Google Scholar 

  3. Guan, K., Some properties of a class of symmetric functions, J. Math. Anal. Appl., 336(1), 2007, 70–80.

    Article  MathSciNet  MATH  Google Scholar 

  4. Shi, H. N., Schur-convex functions related to Hadamard-type inequalities, J. Math. Inequal., 1(1), 2007, 127–136.

    Article  MathSciNet  MATH  Google Scholar 

  5. Stepniak, C., An effective characterization of Schur-convex functions with applications, J. Convex Anal., 14(1), 2007, 103–108.

    MathSciNet  Google Scholar 

  6. Zhang, X. M., Schur-convex functions and isoperimetric inequalities, Proc. Amer. Math. Soc., 126(2), 1998, 461–470.

    Article  MathSciNet  MATH  Google Scholar 

  7. Chan, N. N., Schur-convexity for A-optimal designs, J. Math. Anal. Appl., 122(1), 1987, 1–6.

    Article  MathSciNet  MATH  Google Scholar 

  8. Guan, K. Z., The Hamy symmetric function and its generalization, Math. Inequal. Appl., 9(4), 2006, 797–805.

    MathSciNet  MATH  Google Scholar 

  9. Guan, K. Z., A class of symmetric functions for multiplicatively convex function, Math. Inequal. Appl., 10(4), 2007, 745–753.

    MathSciNet  MATH  Google Scholar 

  10. Guan, K. Z., Schur-convexity of the complete symmetric function, Math. Inequal. Appl., 9(4), 2006, 567–576.

    MathSciNet  MATH  Google Scholar 

  11. Guan, K. Z. and Guan, R., Some properties of a generalized Hamy symmetric function and its applications, J. Math. Anal. Appl., 376(2), 2011, 494–505.

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiang, W. D., Some properties of dual form of the Hamy’s symmetric function, J. Math. Inequal., 1(1), 2007, 117–125.

    Article  MathSciNet  MATH  Google Scholar 

  13. Qi, F., Sándor, J., Dragomir, S. S. and Sofo, A., Notes on the Schur-convexity of the extended mean values, Taiwanese J. Math., 9(3), 2005, 411–420.

    MathSciNet  MATH  Google Scholar 

  14. Stepniak, C., Stochastic ordering and Schur-convex functions in comparison of linear experiments, Metrika., 36(5), 1989, 291–298.

    Article  MathSciNet  MATH  Google Scholar 

  15. Hwang, F. K. and Rothblum, U. G., Partition-optimization with Schur convex sum objective functions, SIAM J. Discrete Math., 18(3), 2004, 512–524.

    Article  MathSciNet  Google Scholar 

  16. Constantine, G. M., Schur convex functions on the spectra of graphs, Discrete Math., 45(2–3), 1983, 181–188.

    Article  MathSciNet  MATH  Google Scholar 

  17. Merkle, M., Convexity, Schur-convexity and bounds for the gamma function involving the digamma function, Rocky Mountain J. Math., 28(3), 1998, 1053–1066.

    Article  MathSciNet  MATH  Google Scholar 

  18. Hwang, F. K., Rothblum, U. G. and Shepp, L., Monotone optimal multipartitions using Schur convexity with respect to partial orders, SIAM J. Discrete Math., 6(4), 1993, 533–547.

    Article  MathSciNet  MATH  Google Scholar 

  19. Hardy, G. H., Littlewood, J. E. and Polya, G., Some simple inequalities satisfied by convex functions, Messenger of Mathematics, 58, 1929, 145–152.

    Google Scholar 

  20. Chu, Y. M., Xia, W. F. and Zhao, T. H., Schur convexity for a class of symmetric functions, Sci. China Math., 53(2), 2010, 465–474.

    Article  MathSciNet  MATH  Google Scholar 

  21. Xia, W. F. and Chu, Y. M., On Schur convexity of some symmetric functions, J. Inequal. Appl., 2010, Article ID: 543250, 12 pages.

    Google Scholar 

  22. Xia, W. F. and Chu, Y. M., Certain properties for a class of symmetric functions with applications, International Journal of Modern Mathematics, 5(3), 2010, 263–274.

    MathSciNet  MATH  Google Scholar 

  23. Xia, W. F., Wang G. D. and Chu, Y. M., Schur convexity and inequalities for a class of symmetric functions, Int. J. Pure and Appl. Math., 58(4), 2010, 435–452.

    MathSciNet  MATH  Google Scholar 

  24. Chu, Y. M., Xia, W. F. and Zhang, X. H., The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications, J. Multivariate Anal., 105(1), 2012, 412–421.

    Article  MathSciNet  MATH  Google Scholar 

  25. Bullen, P. S., A Dictionary of Inequalities, Longman, Harlow, 1998.

    MATH  Google Scholar 

  26. Beckenbach, E. F. and Bellman, R., Inequalities, Springer-Verlag, Berlin, 1961.

    Book  Google Scholar 

  27. Mitrinović, D. S., Pečarić, J. E. and Volenec, V., Recent Advances in Geometric Inequalities, Kluwer Academic Publishers Group, Dordrecht, 1989.

    Book  MATH  Google Scholar 

  28. Safta, I., Problem C: 14, Gaz. Mat., 86, 1981, 224.

    Google Scholar 

  29. Marshall, A. W. and Olkin, I., Inequalities: theory of majorization and its applications, Mathematics in Science and Engineering, Vol 143, Academic Press, New York, 1979.

    MATH  Google Scholar 

  30. Bullen, P. S., Handbook of Means and Their Inequalities, Kluwer Academic Publishers Group, Dordrecht, 2003.

    Book  MATH  Google Scholar 

  31. Mitrinović, D. S., Analytic Inequalities, Springer-Verlag, New York, 1970.

    Book  MATH  Google Scholar 

  32. Wu, S. H., Generalization and sharpness of the power means inequality and their applications, J. Math. Anal. Appl., 312(2), 2005, 637–652.

    Article  MathSciNet  MATH  Google Scholar 

  33. Alzer, H., The inequality of Ky Fan and related results, Acta Appl. Math., 38(3), 1995, 305–354.

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, H. F., Generalization and sharpening of Safta’s conjeture in the n-dimensional space, J. Geom., 68, 2000, 214–217.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingbao Sun.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11271118, 10871061, 11301172), the Nature Science Foundation of Hunan Province (No. 12JJ3002), the Scientific Research Fund of Hunan Provincial Education Department (No. 11A043) and the Construct Program of the Key Discipline in Hunan Province.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Chen, N., Li, S. et al. Schur convexity for two classes of symmetric functions and their applications. Chin. Ann. Math. Ser. B 35, 969–990 (2014). https://doi.org/10.1007/s11401-014-0860-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-014-0860-x

Keywords

2000 MR Subject Classification

Navigation