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1 Introduction
Throughout the article, R denotes the set of real numbers, x = (x1, x2, . . . , xn) denotes n-
tuple (n-dimensional real vectors), the set of vectors can be written as

R
n =

{
x = (x1, x2, . . . , xn) : xi ∈R, i = 1, 2, . . . , n

}
,

R
n
+ =

{
x = (x1, x2, . . . , xn) : xi > 0, i = 1, 2, . . . , n

}
,

R
n
– =

{
x = (x1, x2, . . . , xn) : xi < 0, i = 1, 2, . . . , n

}
.

In particular, the notations R and R+ denote R
1 and R

1
+, respectively.

In recent years, the Schur-convexity, Schur-geometric, and Schur-harmonic convexities
of various symmetric functions have been a hot topic of inequality research [1–30].

The following complete symmetric function is an important class of symmetric func-
tions.

For x = (x1, x2, . . . , xn) ∈ R
n, the complete symmetric function cn(x, r) is defined as

cn(x, r) =
∑

i1+i2+···+in=r

xi1
1 xi2

2 · · ·xin
n , (1)

where c0(x, r) = 1, r ∈ {1, 2, . . . , n}, i1, i2, . . . , in are nonnegative integers.
It has been investigated by many mathematicians, and there are many interesting results

in the literature.
Guan [4] discussed the Schur-convexity of cn(x, r) and proved the following.
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Proposition 1 cn(x, r) is increasing and Schur-convex on R
n
+.

Subsequently, Chu et al. [1] proved the following.

Proposition 2 cn(x, r) is Schur-geometrically convex and Schur-harmonically convex
on R

n
+.

In 2016, Shi et al. [18] further considered the Schur-convexity of cn(x, r) on R
n
–, which

proved the following proposition.

Proposition 3 If r is an even integer (or odd integer, respectively), then cn(x, r) is decreasing
and Schur-convex (or increasing and Schur-concave, respectively) on R

n
–.

The dual form of the complete symmetric function cn(x, r) is defined as

c∗
n(x, r) =

∏

i1+i2+···+in=r

n∑

j=1

ijxj, (2)

where c∗
0(x, r) = 1, r ∈ {1, 2, . . . , n}, i1, i2, . . . , in are nonnegative integers.

Zhang and Shi [17] proved the following two propositions.

Proposition 4 For r = 1, 2, . . . , n, c∗
n(x, r) is increasing and Schur-concave on R

n
+.

Proposition 5 For r = 1, 2, . . . , n, c∗
n(x, r) is Schur-geometrically convex and Schur-

harmonically convex on R
n
+.

Notice that

c∗
n(–x, r) = (–1)rc∗

n(x, r),

it is not difficult to prove the following proposition.

Proposition 6 If r is an even integer (or odd integer, respectively), then c∗
n(x, r) is decreasing

and Schur-concave (or increasing and Schur-convex, respectively) on R
n
–.

In this paper we will study the Schur-convexity, Schur-geometric and Schur-harmonic
convexities of the following composite function of c∗

n(x, r):

c∗
n
(
f (x), r

)
= c∗

n
(
f (x1), f (x2), . . . , f (xn), r

)
=

∏

i1+i2+···+in=r

n∑

j=1

ij
(
f (xj)

)
, (3)

where f is a positive function which satisfies certain conditions.
Our main results are as follows.

Theorem 1 Let I ⊂R be a symmetric convex set with nonempty interior, and let f : I →R+

be continuous on I and differentiable in the interior of I .
(a) If f is a log-convex function on I , then for any r = 1, 2, . . . , n, c∗

n(f (x), r) is a
Schur-convex function on In;
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(b) If f is a concave function on I , then for any r = 1, 2, . . . , n, c∗
n(f (x), r) is a

Schur-concave function on In.

Theorem 2 Let I ⊂R+ be a symmetric convex set with nonempty interior and let f : I →R+

be continuous on I and differentiable in the interior of I .
(a) If f is an increasing and log-convex function on I , then for any r = 1, 2, . . . , n,

c∗
n(f (x), r) is a Schur-geometrically convex function on In.

(b) If f is a descending and concave function on I , then for any r = 1, 2, . . . , n, c∗
n(f (x), r) is

a Schur-geometrically concave function on In.

Theorem 3 Let I ⊂ R+ be a symmetric convex set with nonempty interior, and let f : I →
R+ be continuous on I and differentiable in the interior of I .

(a) If f is an increasing and log-convex function on I , then for any r = 1, 2, . . . , n,
c∗

n(f (x), r) is a Schur-harmonically convex function on In.
(b) If f is a descending and concave function on I , then for any r = 1, 2, . . . , n, c∗

n(f (x), r) is
a Schur-harmonically concave function on In.

2 Definitions and lemmas
For convenience, we introduce some definitions as follows.

Definition 1 ([31, 32]) Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈R
n.

(a) x ≥ y means xi ≥ yi for all i = 1, 2, . . . , n.
(b) Let Ω ⊂R

n, ϕ: Ω →R is said to be increasing if x ≥ y implies ϕ(x) ≥ ϕ(y). ϕ is said
to be decreasing if and only if –ϕ is increasing.

Definition 2 ([31, 32]) Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈R
n.

(a) x is said to be majorized by y (in symbols x ≺ y) if
∑k

i=1 x[i] ≤ ∑k
i=1 y[i] for

k = 1, 2, . . . , n – 1 and
∑n

i=1 xi =
∑n

i=1 yi, where x[1] ≥ x[2] ≥ · · · ≥ x[n] and
y[1] ≥ y[2] ≥ · · · ≥ y[n] are rearrangements of x and y in a descending order.

(b) Let Ω ⊂ R
n, ϕ: Ω →R is said to be a Schur-convex function on Ω if x ≺ y on Ω

implies ϕ(x) ≤ ϕ(y). ϕ is said to be a Schur-concave function on Ω if and only if –ϕ

is Schur-convex function on Ω .

Definition 3 ([31, 32]) Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈R
n.

(a) Ω ⊂R
n is said to be a convex set if x, y ∈ Ω , 0 ≤ α ≤ 1, implies

αx + (1 – α)y = (αx1 + (1 – α)y1,αx2 + (1 – α)y2, . . . ,αxn + (1 – α)yn) ∈ Ω .
(b) Let Ω ⊂ R

n be a convex set. A function ϕ: Ω →R is said to be a convex function
on Ω if

ϕ
(
αx + (1 – α)y

) ≤ αϕ(x) + (1 – α)ϕ(y)

for all x, y ∈ Ω , and all α ∈ [0, 1]. ϕ is said to be a concave function on Ω if and only
if –ϕ is a convex function on Ω .

Definition 4 ([31, 32])
(a) A set Ω ⊂ R

n is called a symmetric set if x ∈ Ω implies xP ∈ Ω for every n × n
permutation matrix P.
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(b) A function ϕ : Ω →R is called symmetric if, for every permutation matrix P,
ϕ(xP) = ϕ(x) for all x ∈ Ω .

Lemma 1 (Schur-convex function decision theorem [31, 32]) Let Ω ⊂ R
n be symmetric

and have a nonempty interior convex set. Ω0 is the interior of Ω . ϕ : Ω → R is continuous
on Ω and differentiable in Ω0. Then ϕ is the Schur-convex (or Schur-concave, respectively)
function if and only if ϕ is symmetric on Ω and

(x1 – x2)
(

∂ϕ

∂x1
–

∂ϕ

∂x2

)
≥ 0 (or ≤ 0, respectively) (4)

holds for any x ∈ Ω0.

The first systematical study of the functions preserving the ordering of majorization
was made by Issai Schur in 1923. In Schur’s honor, such functions are said to be “Schur-
convex”. They can be used extensively in analytic inequalities, combinatorial optimization,
quantum physics, information theory, and other related fields. See [31].

Definition 5 ([33]) Let x = (x1, x2, . . . , xn) ∈R
n
+ and y = (y1, y2, . . . , yn) ∈R

n
+.

(a) Ω ⊂R
n
+ is called a geometrically convex set if (xα

1 yβ
1 , xα

2 yβ
2 , . . . , xα

nyβ
n ) ∈ Ω for all x,

y ∈ Ω and α, β ∈ [0, 1] such that α + β = 1.
(b) Let Ω ⊂R

n
+. The function ϕ: Ω →R+ is said to be a Schur-geometrically convex

function on Ω if (log x1, log x2, . . . , log xn) ≺ (log y1, log y2, . . . , log yn) on Ω implies
ϕ(x) ≤ ϕ(y). The function ϕ is said to be a Schur-geometrically concave function on
Ω if and only if –ϕ is a Schur-geometrically convex function on Ω .

The Schur-geometric convexity was proposed by Zhang [33] in 2004, and it was inves-
tigated by Chu et al. [34], Guan [35], Sun et al. [36], and so on. We also note that some
authors use the term “Schur multiplicative convexity”.

In 2009, Chu ([1, 2, 37]) introduced the notion of Schur-harmonically convex function,
and some interesting inequalities were obtained.

Definition 6 ([37]) Let Ω ⊂ R
n
+ or Ω ⊂ R

n
–.

(a) A set Ω is said to be harmonically convex if xy
λx+(1–λ)y ∈ Ω for every x, y ∈ Ω and

λ ∈ [0, 1], where xy =
∑n

i=1 xiyi and 1
x = ( 1

x1
, 1

x2
, . . . , 1

xn
).

(b) A function ϕ : Ω →R+ is said to be Schur-harmonically convex on Ω if 1
x ≺ 1

y

implies ϕ(x) ≤ ϕ(y). A function ϕ is said to be a Schur-harmonically concave
function on Ω if and only if –ϕ is a Schur-harmonically convex function.

Remark 1 We extend the definition and determination theorem of Schur-harmonically
convex function established by Chu as follows:

(a) Ω ⊂R
n
+ is extended to Ω ⊂R

n
+ or Ω ⊂R

n
–;

(b) The function ϕ : Ω →R must not be a positive function.

Lemma 2 ([31, 32]) Let the set A,B ⊂ R, ϕ : Bn → R, f : A → B and ψ(x1, x2, . . . , xn) =
ϕ(f (x1), f (x2), . . . , f (xn)) : An →R.

(a) If f is convex and ϕ is increasing and Schur-convex, then ψ is Schur-convex;
(b) If f is concave, ϕ is increasing and Schur-concave, then ψ is Schur-concave.
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Lemma 3 Let the set Ω ⊂R
n
+. The function ϕ : Ω →R+ is differentiable.

(a) If ϕ is increasing and Schur-convex, then ϕ is Schur geometrically convex.
(b) If ϕ is decreasing and Schur-concave, then ϕ is Schur geometrically concave.

Lemma 4 Let the set Ω ⊂R
n
+. The function ϕ : Ω →R+ is differentiable.

(a) If ϕ is increasing and Schur-convex, then ϕ is Schur-harmonically convex.
(b) If ϕ is decreasing and Schur-concave, then ϕ is Schur-harmonically concave.

Lemma 5 ([31, 32]) Let (x = (x1, x2, . . . , xn) ∈R
n. Then

(
A(x), A(x), . . . , A(x)

) ≺ (x = (x1, x2, . . . , xn), (5)

where A(x) = 1
n
∑n

i xi.

Lemma 6 ([22]) Let

q(t) =
ut – 1

t
.

If u > 1, then q(t) is a log-convex function on R+.

3 Proof of main results

Proof of Theorem 1 For the case of r = 1 and r = 2, it is easy to prove that c∗
n(f (x), r) is

Schur-convex on In.
Now consider the case of r ≥ 3. By the symmetry of c∗

n(f (x), r), without loss of generality,
we can set x1 > x2.

c∗
n
(
(x), r

)
=

∏

i1+i2+···+in=r
i1 	=0,i2=0

n∑

j=1

ijf (xj) ×
∏

i1+i2+···+in=r
i1=0,i2 	=0

n∑

j=1

ijf (xj)

×
∏

i1+i2+···+in=r
i1 	=0,i2 	=0

n∑

j=1

ijf (xj) ×
∏

i1+i2+···+in=r
i1=0,i2=0

n∑

j=1

ijf (xj).

Then

∂c∗
n(f (x), r)
∂x1

= c∗
n
(
f (x), r

)

×
( ∑

i1+i2+···+in=r
i1 	=0,i2=0

i1f ′(x1)
∑n

j=1 ijf (xj)
+

∑

i1+i2+···+in=r
i1 	=0,i2 	=0

i1f ′(x1)
∑n

j=1 ijf (xj)

)

= c∗
n
(
f (x), r

)( ∑

k+k3+···+kn=r
k 	=0

kf ′(x1)
kf (x1) +

∑n
j=3 ijf (xj)

+
∑

k+m+i3+···+in=r
k 	=0,m 	=0

kf ′(x1)
kf (x1) + mf (x2) +

∑n
j=3 ijf (xj)

)
. (6)
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By the same arguments,

∂c∗
n(f (x), r)
∂x2

= c∗
n
(
f (x), r

)

= c∗
n
(
f (x), r

)( ∑

k+k3+···+kn=r
k 	=0

kf ′(x2)
kf (x2) +

∑n
j=3 ijf (xj)

+
∑

k+m+i3+···+in=r
k 	=0,m 	=0

kf ′(x2)
kf (x2) + mf (x1) +

∑n
j=3 ijf (xj)

)
,

∂c∗
n(f (x), r)
∂x1

–
∂c∗

n(f (x), r)
∂x2

= c∗
n
(
f (x), r

)
(A1 + A2),

(7)

where

A1 =
∑

k+k3+···+kn=r
k 	=0

(
kf ′(x1)

kf (x1) +
∑n

j=3 ijf (xj)
–

kf ′(x2)
kf (x2) +

∑n
j=3 ijf (xj)

)

= k
∑

k+k3+···+kn=r
k 	=0

k(f (x2)f ′(x1) – f (x1)f ′(x2)) + (f ′(x1) – f ′(x2))
∑n

j=3 ijf (xj)
(kf (x1) +

∑n
j=3 ijf (xj))(kf (x2) +

∑n
j=3 ijf (xj))

(8)

and

A2 =
∑

k+m+i3+···+in=r
k 	=0,m 	=0

(
kf ′(x1)

kf (x1) + mf (x2) +
∑n

j=3 ijf (xj)
–

kf ′(x2)
kf (x2) + mf (x1) +

∑n
j=3 ijf (xj)

)

= k
∑

k+m+i3+···+in=r
k 	=0,m 	=0

δ

(kf (x1) + mf (x2) +
∑n

j=3 ijf (xj))(kf (x2) + mf (x1) +
∑n

j=3 ijf (xj))

where

δ = k
(
f (x2)f ′(x1) – f (x1)f ′(x2)

)
+ m

(
f (x1)f ′(x1) – f (x2)f ′(x2)

)

+
(
f ′(x1) – f ′(x2)

) n∑

j=3

ijf (xj).

(a) Since the log-convex function must be convex function, so f ′(x1) – f ′(x2) ≥ 0 and
f (x2)f ′(x1) – f (x1)f ′(x2) ≥ 0, and since (f (x)f ′(x))′ = (f ′(x))2 + f (x)f ′′(x) ≥ 0, so
f (x1)f ′(x1) – f (x2)f ′(x2) ≥ 0, and then A1 ≥ 0 and A2 ≥ 0. For x ∈ In, we have

∂c∗
n(f (x), r)
∂x1

–
∂c∗

n(f (x), r)
∂x2

≥ 0,

by Lemma 1, it follows that c∗
n(f (x), r) is Schur-convex on In.

(b) By Proposition 4, we know that c∗
n(x, r) is increasing and Schur-concave on R

n
+.

Since f is concave, from (b) in Lemma 4 it follows that c∗
n(f (x), r) is Schur-concave

on In.
The proof of Theorem 1 is completed. �
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Proof of Theorem 2 Theorem 2 can be proved by Theorem 1 combined with Lemma 3.
The proof of Theorem 2 is completed. �

Proof of Theorem 3 Theorem 3 can be proved by Theorem 1 combined with Lemma 4.
The proof of Theorem 3 is completed. �

4 Applications
Let

c∗
n

(
1
x

, r
)

=
∏

i1+i2+···+in=r

n∑

j=1

ij

(
1
xj

)
. (9)

Theorem 4 The symmetric function c∗
n( 1

x , r) is Schur-convex on R
n
+. If r is an even integer

(or odd integer, respectively ), then c∗
n( 1

x , r) is Schur-convex (or Schur-concave, respectively)
on R

n
–.

Proof Let f (x) = 1
x . Then (ln f (x))′′ = 1

x2 , so f (x) is log-convex on R+, by (a) in Theorem 1,
it follows that c∗

n( 1
x , r) is Schur-convex on R

n
+.

For x ∈ R
n
–, –x ∈ R

n
+, so c∗

n( 1
–x , r) is Schur-convex on R

n
–. But

c∗
n

(
1

–x
, r

)
= (–1)rc∗

n

(
1
x

, r
)

.

This means that if r is an even integer, then

c∗
n

(
1
x

, r
)

= c∗
n

(
1

–x
, r

)

is Schur-convex on R
n
–.

If r is an odd integer, then

c∗
n

(
1
x

, r
)

= –c∗
n

(
1

–x
, r

)

is Schur-concave on R
n
–.

The proof of Theorem 4 is completed. �

By Theorem 4 and majorizing relation (7), it is not difficult to prove the following corol-
lary.

Corollary 1 If x ∈R
n
+ or r is an even integer and x ∈ R

n
–, then we have

∏

i1+i2+···+in=r

n∑

j=1

ij

(
1
xj

)
≥

(
r

An(x)

)(n+r–1
r )

, (10)

where An(x) = 1
n
∑n

i=1 xi and
( n+r–1

r

)
= (n+r–1)!

r!((n+r–1)–r)! . If r is odd and x ∈ R
n
–, then inequality

(10) is reversed.
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Let

c∗
n

(
x

1 – x
, r

)
=

∏

i1+i2+···+in=r

n∑

j=1

ij

(
xj

1 – xj

)
. (11)

Theorem 5 The symmetric function c∗
n( x

1–x , r) is Schur-convex, Schur-geometrically con-
vex, and Schur-harmonically convex on [ 1

2 , 1]n.

Proof Let g(x) = x
1–x . Then (ln g(x))′′ = 2x–1

x2(1–x)2 , so f (x) is log-convex on [ 1
2 , 1]; by Theo-

rem 1(a), it follows that c∗
n( x

1–x , r) is Schur-convex on [ 1
2 , 1]n. Noting that g(x) is increasing

on [ 1
2 , 1], by (a) in Theorem 2 and (a) in Theorem 3, it follows that c∗

n( x
1–x , r) is Schur-

geometrically convex and Schur-harmonically convex on [ 1
2 , 1]n.

The proof of Theorem 5 is completed. �

From the majorizing relation (7), the following majorizing relation is established:

(
log Gn(x), log Gn(x), . . . , log Gn(x)

) ≺ (log x1, log x2, . . . , log xn).

By this majorizing relation and Theorem 5, it is not difficult to prove the following corol-
lary.

Corollary 2 If x ∈ [ 1
2 , 1]n, then we have

∏

i1+i2+···+in=r

n∑

j=1

ij

(
xj

1 – xj

)
≥

(
rGn(x)

1 – Gn(x)

)(n+r–1
r )

, (12)

where Gn(x) = n
√∏n

i=1 xi.

Let

c∗
n

(
1 + x
1 – x

, r
)

=
∏

i1+i2+···+in=r

n∑

j=1

ij

(
1 + xj

1 – xj

)
. (13)

Theorem 6
(a) The symmetric function c∗

n( 1+x
1–x , r) is Schur-convex, Schur-geometrically convex, and

Schur-harmonically convex on (0, 1)n.
(b) If r is an even integer (or odd integer, respectively ), then c∗

n( 1+x
1–x , r) is Schur-convex (or

Schur-concave, respectively) on (1, +∞)n.

Proof (a) Let h(x) = 1+x
1–x . Then (ln h(x))′′ = 4x

(1+x)2(1–x)2 , so f (x) is log-convex on (0, 1), by
Theorem 1(a), it follows that c∗

n( 1+x
1–x , r) is Schur-convex on (0, 1)n. Noting that h(x) is in-

creasing on (0, 1)n, by (a) in Theorem 2 and (a) in Theorem 3, it follows that c∗
n( 1+x

1–x , r) is
Schur-geometrically convex and Schur-harmonically convex on (0, 1)n.

(b) For x ∈ (1, +∞), we consider

c∗
n

(
1 + x
x – 1

, r
)

=
∏

i1+i2+···+in=r

n∑

j=1

ij

(
1 + xj

xj – 1

)
. (14)



Shi et al. Journal of Inequalities and Applications         (2020) 2020:65 Page 9 of 11

Let h1(x) = 1+x
x–1 . Then (ln h1(x))′′ = 4x

(1+x)2(x–1)2 , so f (x) is log-convex on (1, +∞), by (a) in
Theorem 1, it follows that c∗

n( 1+x
x–1 , r) is Schur-convex on (1, +∞)n.

Noting that

c∗
n

(
1 + x
1 – x

, r
)

= (–1)rc∗
n

(
1 + x
x – 1

, r
)

,

combining the Schur-convexity of c∗
n( 1+x

x–1 , r), we can get (b) in Theorem 6.
The proof of Theorem 6 is completed. �

Let

c∗
n

(
1
x

– x, r
)

=
∏

i1+i2+···+in=r

n∑

j=1

ij

(
1
xj

– xj

)
. (15)

Theorem 7
(a) If r is an even integer (or odd integer, respectively), then c∗

n( 1
x – x, r) is Schur-concave

(or Schur-convex, respectively) on R
n
+.

(b) The symmetric function c∗
n( 1

x – x, r) is Schur-concave on R
n
–.

(c) If r is an even integer, then c∗
n( 1

x – x, r) is Schur-geometrically concave and
Schur-harmonically concave on (–∞, 1]n.

Proof First consider

c∗
n

(
x –

1
x

, r
)

=
∏

i1+i2+···+in=r

n∑

j=1

ij

(
xj –

1
xj

)
.

(a) Let p(x) = x – 1
x . Then p′′(x) = – 2

x3 , so f (x) is concave on R+, by Theorem 1(b), it
follows that c∗

n(x – 1
x , r) is Schur-concave on R

n
+.

Noting that

c∗
n

(
1
x

– x, r
)

= (–1)nc∗
n

(
x –

1
x

, r
)

,

combining the Schur-concavity of c∗
n( 1

x – x, r), we can get (a) in Theorem 7.
(b) Noting that

c∗
n

(
1

–x
– (–x), r

)
= (–1)rc∗

n

(
1
x

– x, r
)

,

combining (a) in Theorem 7, it is not difficult to verify that (b) in Theorem 7 holds.
(c) It is not difficult to verify that p(x) = x – 1

x is nonnegative and decreasing on
(–∞, 1], by Lemma 5 and Lemma 6, from (a) and (b) in Theorem 7, it follows that
(c) in Theorem 7 holds.

The proof of Theorem 7 is completed. �

For u > 1, let

c∗
n

(
ux – 1

x
, r

)
=

∏

i1+i2+···+in=r

n∑

j=1

ij

(
uxj – 1

xj

)
. (16)
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Theorem 8 The symmetric function c∗
n( ux –1

x , r) is Schur-convex, Schur-geometrically con-
vex, and Schur-harmonically convex on R

n
+ for u > 1.

Proof Let q(t) = ut–1
t . Then from Lemma 6 and (a) in Theorem 1, it follows that c∗

n( ux –1
x , r)

is Schur-convex on R
n
+ for u > 1.

Since

q′(t) =
s(t)
t2 ,

where s(t) = ut(t log u – 1) + 1, s′(t) = ut log u log ut > 0, for u > 1 and t > 0, so s(t) ≥ s(0) = 0,
and then q′(t) ≥ 0, that is, q(t) is increasing on R

n
+, by (a) in Theorem 2 and (a) in The-

orem 3, it follows that c∗
n( ux –1

x , r) is Schur-geometrically convex and Schur-harmonically
convex on R

n
+.

The proof of Theorem 8 is completed. �

From the majorizing relation (7), the following majorizing relation is established:

(
1

Hn(x)
,

1
Hn(x)

, . . . ,
1

Hn(x)

)
≺

(
1
x1

,
1
x2

, . . . ,
1
xn

)
.

By this majorizing relation and Theorem 8, it is not difficult to prove the following corol-
lary.

Corollary 3 If x = (x1, x2, . . . , xn) ∈ R
n
+ and u > 1, then

∏

i1+i2+···+in=r

n∑

j=1

ij

(
uxj – 1

xj

)
≥

(
r(uHn(x) – 1)

Hn(x)

)(n+r–1
r )

, (17)

where Hn(x) = n∑n
i=1 x–1

i
.

Discovering and judging Schur convexity of various symmetric functions is an important
subject in the study of the majorization theory. In recent years, many domestic scholars
have made a lot of achievements in this field (see [24–30]).
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