Skip to main content
Log in

Photothermal influences in semiconductors with temperature-dependent properties generated by laser radiation using strain–temperature rate-dependent theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, a novel model is constructed to study the photothermal effects generated in a half-space semiconducting medium by a uniform laser radiation using the modified Green–Lindsay theory. The considered medium is assumed to have temperature-dependent properties. Furthermore, the medium surface is exposed to cooling effect and taken to be traction-free. The obtained mathematical model is treated using Laplace transform, while its inverse obtained numerically. Unlike the existing results, in this work two cases of the surface absorption coefficient are studied with comparisons, and these are constant and temperature-dependent absorption coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data.

Abbreviations

k :

Is the thermal conductivity.

\( \rho \) :

Is the density

\( C_E\) :

Is the specific heat at constant strain

T :

Is the absolute temperature

\(T_0\) :

Is the reference temperature

\(E_g\) :

Is the energy gap

\(\tau \) :

Is the photo-generated carrier lifetime

\(D_E\) :

Is the carrier diffusion coefficient

A :

Is the absorption coefficient of the material

\(q_0\) :

Is the intensity of laser

\(n_0\) :

Is the equilibrium free-carrier at temperature T. \(\sigma _{ij}\) Are the stress tensor

\(\lambda \) and \(\mu \) :

Are Lamé constants

\(\alpha _T \) and \(\alpha _n \) :

Are the coefficients of linear thermal expansion and electronic deformation

\(\varrho _{ij}\) :

Represent the strain components

\(\delta _0\) :

Is the surface recompilation velocity

References

  1. M.A. Biot, Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3), 240–253 (1956). https://doi.org/10.1063/1.1722351

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. H. Sherief, A.M.A. El-Sayed, A.M. Abd El-Latief, Fractional order theory of thermoelasticity. Int. J. Solids Struct. 47(2), 269–275 (2010). https://doi.org/10.1016/j.ijsolstr.2009.09.034

    Article  MATH  Google Scholar 

  3. H.W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967). https://doi.org/10.1016/0022-5096(67)90024-5

    Article  ADS  MATH  Google Scholar 

  4. H.H. Sherief, A.E.M. Elmisiery, M.A. Elhagary, Generalized thermoelastic problem for an infinitely long hollow cylinder for short times. J. Therm. Stresses 27(10), 885–902 (2004). https://doi.org/10.1080/01495730490498331

    Article  Google Scholar 

  5. H.H. Sherief, On uniqueness and stability in generalized thermoelasticity. Q. Appl. Math. 44, 773–778 (1987)

    Article  MathSciNet  Google Scholar 

  6. E.F. Henain, A.F. Hassan, F. Megahed, I.M. Tayel, Thermo-elastic half space under illumination of a laser beam using Lord and Shulman theory. J. Therm. Stresses 37(1), 51–72 (2014). https://doi.org/10.1080/01495739.2013.839431

    Article  Google Scholar 

  7. A.E. Green, K.A. Lindsay, Thermoelasticity. J. Elast. 2(1), 1–7 (1972). https://doi.org/10.1007/BF00045689

    Article  MATH  Google Scholar 

  8. H.H. Sherief, State space approach to thermoelasticity with two relaxation times. Int. J. Eng. Sci. 31(8), 1177–1189 (1993). https://doi.org/10.1016/0020-7225(93)90091-8

    Article  MathSciNet  MATH  Google Scholar 

  9. H.H. Sherief, E.M. Hussein, Fundamental solution of thermoelasticity with two relaxation times for an infinite spherically symmetric space. J. App. Math. Phys. 68(2), 1–14 (2017). https://doi.org/10.1007/s00033-017-0794-8

    Article  MathSciNet  MATH  Google Scholar 

  10. R.S. Dhaliwal, J.G. Rokne, One-dimensional thermal shock problem with two relaxation times. J. Therm. Stresses 12(2), 259–279 (1989). https://doi.org/10.1080/01495738908961965

    Article  MathSciNet  Google Scholar 

  11. J. Ignaczak, E.B. Mr Owka-Matejewska, One-dimensional green\(^{\prime }\)s function in temmperature-rate dependent thermoelasticity. J. Therm. Stresses 13(3), 281–296 (1990). https://doi.org/10.1080/01495739008927038

    Article  Google Scholar 

  12. Y.J. Yu, Z.N. Xue, X.G. Tian, A modified Green–Lindsay thermoelasticity with strain rate to eliminate the discontinuity. Meccanica 53, 2543–2554 (2018). https://doi.org/10.1007/s11012-018-0843-1

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Gupta, S. Mukhopadhyay, Galerkin-type solution for the theory of strain and temperature rate-dependent thermoelasticity. Acta Mech. 230, 3633–3643 (2019). https://doi.org/10.1007/s00707-019-02482-z

    Article  MathSciNet  MATH  Google Scholar 

  14. R.V. Singh, S. Mukhopadhyay, An investigation on strain and temperature rate-dependent thermoelasticity and its infinite speed behavior. J. Therm. Stresses 43(3), 269–283 (2020). https://doi.org/10.1080/01495739.2019.1680333

    Article  Google Scholar 

  15. N. Sarkar, S. De, N. Sarkar, Modified Green–Lindsay model on the reflection and propagation of thermoelastic plane waves at an isothermal stress-free surface. Indian J. Phys. 94(8), 1215–1225 (2020). https://doi.org/10.1007/s12648-019-01566-9

    Article  ADS  Google Scholar 

  16. I.M. Tayel, M. Mohamed, Surface absorption illumination in a generalized thermoelastic layer under temperature-dependent properties using MGL model. Waves in Random and Complex Media (2021). https://doi.org/10.1080/17455030.2021.1974120

    Article  Google Scholar 

  17. A.M.S. Mahdy, Kh. Lotfy, A. El-Bary, I.M. Tayel, Variable thermal conductivity and hyperbolic two-temperature theory during magneto-photothermal theory of semiconductor induced by laser pulses. Eur. Phys. J. Plus, vol. 136 (2021)

  18. Y.Q. Song, J.T. Bai, Z.Y. Ren, Acta Mech. 223, 1545–1557 (2012). https://doi.org/10.1007/s00707-012-0677-1

    Article  MathSciNet  Google Scholar 

  19. D.M. Trodovic, P.M. Nikolic, A.I. Bojicic, Photoacoustic frecuency transmissin technique: electronic deformation mechanism in semiconductors. J. Appl. Phys. 85, 7716 (1999). https://doi.org/10.1063/1.370576

    Article  ADS  Google Scholar 

  20. D.M. Trodovic, Plasma, thermal and elastic waves in semeconductors. Rev. Sci. Instrum. 74(1), 528 (2003). https://doi.org/10.1063/1.1523133

    Article  ADS  Google Scholar 

  21. Kh. Lotfy, Effect of variable thermal conductivity during the photothermal diffusion process of semiconductor medium. SILICON 11, 1863–1873 (2019). https://doi.org/10.1007/s12633-018-0005-z

    Article  Google Scholar 

  22. Kh. Lotfy, A.A. El-Bary, Thomson effect in thermo-electro-magneto semiconductor medium during photothermal excitation process. Waves Random Complex Media (2020). https://doi.org/10.1080/17455030.2020.1838665

    Article  MATH  Google Scholar 

  23. Kh. Lotfy, R.S. Tantawi, Thermal conductivity dependent temperature during photo-thermo-elastic excitation of semiconductor material with volumetric absorption laser heat source in gravitational field. Eur. Phys. J. Plus 136(3), 1–21 (2021). https://doi.org/10.1140/epjp/s13360-021-01237-x

    Article  Google Scholar 

  24. M. Ezzat, A novel model of fractional thermal and plasma transfer within a non-metallic plate. Smart Struct. Syst. 27(1), 73–87 (2021). https://doi.org/10.12989/sss.2021.27.1.073

    Article  Google Scholar 

  25. I. Abbas, A. Hobiny, M. Marin, Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity. J. Taibah Univ. Sci. 14(1), 1369–1376 (2020). https://doi.org/10.1080/16583655.2020.1824465

    Article  Google Scholar 

  26. El-Bary. Youssef, Characterization of the photothermal interaction due to ramp-type heat on a semiconducting two-dimensional solid cylinder based on the Lord–Shulman model by using double Laplace transform. Mech. Based Des. Struct. Mach. (2021). https://doi.org/10.1080/15397734.2020.1833740

    Article  Google Scholar 

  27. I.M. Tayel, Kh. Lotfy, Photothermal effects in semiconductors induced by surface absorption of a uniform laser radiation under modified Green–Lindsay theory. Eur. Phys. J. Plus 136, 932 (2021). https://doi.org/10.1140/epjp/s13360-021-01941-8

    Article  Google Scholar 

  28. V.A. Lomakin, Theory of nonhomogeneous elastic bodies, Moscow (1976)

  29. M.A. Ezzat, M.I. Othman, A.S. El-Karamany, The Dependence of the Modulus of elasticity on the reference temperature in generalized thermoelasticity. J. Thermoelast. 24, 1159–1176 (2001)

    Google Scholar 

  30. H.M. Youssef, Dependence of modulus of elasticity and thermal conductivity on reference temperature in generalized thermoelasticity for an innite material with a spherical cavity. Appl. Math. Mech. 26, 470–475 (2005). https://doi.org/10.1007/BF02465386

    Article  MATH  Google Scholar 

  31. M. Aouadi, Generalized thermo-piezoelectric problems with temperature-dependent properties. Int. J. Solids Struct. 43, 6347–6358 (2006). https://doi.org/10.1016/j.ijsolstr.2005.09.003

    Article  MATH  Google Scholar 

  32. M.N. Allam, K.A. Elsibai, A.E. Aboudlregal, Magneto-thermoelasticity for an innite body with a spherical cavity and variable properties without energy dissipation. Int. J. Solids Struct. 47, 2631–2638 (2010). https://doi.org/10.1016/j.ijsolstr.2010.04.021

    Article  MATH  Google Scholar 

  33. Y.Z. Wanga, D. Liua, Q. Wanga, J.Z. Zhou, Thermoelastic behavior of elastic media with temperature-dependent properties under transient thermal shock. J. Therm. Stresses 39(4), 460–473 (2016). https://doi.org/10.1080/01495739.2016.1158603

    Article  Google Scholar 

  34. M.I.A. Othman, R.S. Tantawi, E.E.M. Eraki, Effect of initial stress on a semiconductor material with temperature dependent properties under DPL model. Microsyst. Technol. 23, 5587–5598 (2017). https://doi.org/10.1007/s00542-017-3326-8

    Article  Google Scholar 

  35. L. Debnath, D. Bhatta, Integral Transforms and Their Applications (Taylor and Francis, New York, 2015)

    MATH  Google Scholar 

  36. D.Y. Tzou, Experimental support for the lagging behavior in heat propagation. J. Thermophys. Heat Transf. 9(4), 686–693 (1995). https://doi.org/10.2514/3.725

    Article  Google Scholar 

  37. I.M. Tayel, Generalized functionally graded thermoelastic layer under the effect of volumetric absorption of laser radiation. Mech. Based Des. Struct. Mach. (2020). https://doi.org/10.1080/15397734.2020.1814155

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their useful comments that improved the paper. The authors gratefully acknowledge the support of the Deanship of scientific research at Majmaah University for supporting this work under the project number R-2022-184.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail M. Tayel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, M.A.Y., Tayel, I.M. Photothermal influences in semiconductors with temperature-dependent properties generated by laser radiation using strain–temperature rate-dependent theory. Eur. Phys. J. Plus 137, 703 (2022). https://doi.org/10.1140/epjp/s13360-022-02910-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02910-5

Navigation