Skip to main content
Log in

Study on the reflection of photothermal waves in a semiconducting medium under generalized thermoelastic theory

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this article, coupled generalized thermoelastic with thermal relaxation time and plasma theories were used to study the reflection problem at the surface of a semiinfinite semiconconducting medium during a photothermal process. Using the harmonic wave method, the reflection coefficient ratios were obtained analytically for the incident CI wave and incident rotational wave. The variations of the amplitude of reflection coefficient ratios with the angle of incidence are shown graphically for silicon. Effects of several parameters (thermal relaxation time, thermoelastic coupling parameter, and thermoelectric coupling parameter) on reflection coefficient ratios were given by numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lord H., Shulman Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  MATH  Google Scholar 

  2. Green A.E., Lindsay K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    Article  MATH  Google Scholar 

  3. Chandrasekharaiah D.S.: Thermoelasticity with second sound: a review. Appl. Mech. Rev. 39, 355–376 (1986)

    Article  MATH  Google Scholar 

  4. Chandrasekharaiah D.S.: Hyperbolic thermoelasicity: a review of recent literature. Appl. Mech. Rev. 51, 705–729 (1998)

    Article  Google Scholar 

  5. Sharma J.N., Kumar V., Chand Dayal.: Reflection of generalized thermoelastic waves from the boundary of a half-space. J. Therm. Stress. 26, 925–942 (2003)

    Article  Google Scholar 

  6. Ariman T.: Wave propagation in a micropolar elastic half-space. Acta Mech. 13, 11 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kumar R.: Wave propagation in a micropolar viscoelastic generalized thermoelastic solid. Int. J. Eng. Sci. 38, 1377 (2000)

    Article  Google Scholar 

  8. Ezzat M.A., Othman M.I.A.: Electro-magnetothermoelastic plane waves with thermal relaxation in a medium of perfect conductivity. J. Therm. Stress. 24, 411 (2001)

    Article  Google Scholar 

  9. Singh B.: Reflection and refraction of plane waves at a liquid/thermo-microstretch elastic solid interface. Int. J. Eng. Sci. 39, 583 (2001)

    Article  Google Scholar 

  10. Singh B., Singh S.J.: Reflection of plane waves at the free surface of a fiber-reinforced elastic half-space. Sadhana Acad. Proc. Eng. Sci. 29, 249 (2004)

    MATH  Google Scholar 

  11. Song Y.Q., Zhang Y.C., Xu H.Y., Lu B.H.: Reflection of magnetothermo-visco-elastic waves under generalized thermo-viscoelasticity. Int. J. Thermophys. 25, 909 (2004)

    Article  Google Scholar 

  12. Othman M.I.A., Song Y.Q.: The effect of rotation on the reflection of magneto-thermo-elastic waves under thermoelasticity without energy dissipation. Acta Mech. 184, 189 (2006)

    Article  MATH  Google Scholar 

  13. Singh B., Kumar A., Singh J.: Reflection of generalized thermoelastic waves from a solid half-space under hydrostatic initial stress. Appl. Math. Comput. 177, 170 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Othman M.I.A., Song Y.Q.: Reflection of plane waves from an elastic solid half-space under hydrostatic initial stress without energy dissipation. Int. J. Solids Struct. 44, 5651 (2007)

    Article  MATH  Google Scholar 

  15. Othman M.I.A., Song Y.Q.: Reflection and refraction of thermo-viscoelastic waves at the interface between two micropolar viscoelastic media without energy dissipation. Can. J. Phys. 85, 797 (2007)

    Article  Google Scholar 

  16. Othman M.I.A., Kumer R.: Reflection of magneto-thermoelasticity waves with temperature dependent properties in generalized thermoelasticity. Int. Commun. Heat Mass Transf. 36, 513 (2009)

    Article  Google Scholar 

  17. Gordon J.P., Leite R.C.C., Moore R.S., Porto S.P.S., Whinnery J.R.: Long-transient effects in lasers with inserted liquid samples. Bull. Am. Phys. Soc. 119, 501 (1964)

    Google Scholar 

  18. Kreuzer L.B.: Ultralow gas concentration infrared absorption spectroscopy. J. Appl. Phys. 42, 2934 (1971)

    Article  Google Scholar 

  19. Tam A.C.: Ultrasensitive Laser Spectroscopy, pp. 1–108. Academic Press, New York (1983)

    Google Scholar 

  20. Tam A.C.: Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58, 381 (1986)

    Article  Google Scholar 

  21. Tam A.C.: Photothermal Investigations in Solids and Fluids, pp. 1–33. Academic Press, Boston (1989)

    Google Scholar 

  22. Todorovic D.M., Nikolic P.M., Bojicic A.I.: Photoacoustic frequency transmission technique: electronic deformation mechanism in semiconductors. J. Appl. Phys. 85, 7716 (1999)

    Article  Google Scholar 

  23. Song Y.Q., Todorovic D.M., Cretin B., Vairac P.: Study on the generalized thermoelastic vibration of the optically excited semiconducting microcantilevers. Int. J. Solids Struct. 47, 1871 (2010)

    Article  MATH  Google Scholar 

  24. Mandelis A., Nestoros M., Christofides C.: Thermoelectronic-wave coupling in laser photothermal theory of semiconductors at elevated temperature. Opt. Eng. 36, 459 (1997)

    Article  Google Scholar 

  25. Todorovic D.M.: Plasma, thermal, and elastic waves in semiconductors. Rev. Sci. Instrum. 74, 582 (2003)

    Article  Google Scholar 

  26. Vasil’ev A.N., Sandomirskii V.B.: Photoacoustic effects in finite semiconductors. Sov. Phys. Semicond. 18, 1095 (1984)

    Google Scholar 

  27. Christofides C., Othonos A., Loizidou E.: Influence of temperature and modulation frequency on the thermal activation coupling term in laser photothermal theory. J. Appl. Phys. 92, 1280 (2002)

    Article  Google Scholar 

  28. Todorovic D.M., Nikolic P.M., Bojicic A.I., Radulovic K.T.: Thermoelastic and electronic strain contributions to the frequency transmission photoacoustic effect in semiconductors. Phys. Rev. B 35, 15631 (1997)

    Article  Google Scholar 

  29. O’Leary M.A, Boas D.A, Chance B., Yodh A.G.: Refraction of diffuse photon density waves. Phys. Rev. Lett. 69, 2658 (1992)

    Article  Google Scholar 

  30. Mandelis A., Nicolaides L., Chen Y.: Structure and the reflectionless/refractionless nature of parabolic diffusion-wave fields. Phys. Rev. Lett. 87, 020801 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Q. Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Y.Q., Bai, J.T. & Ren, Z.Y. Study on the reflection of photothermal waves in a semiconducting medium under generalized thermoelastic theory. Acta Mech 223, 1545–1557 (2012). https://doi.org/10.1007/s00707-012-0677-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0677-1

Keywords

Navigation