Skip to main content

Advertisement

Log in

Numerical modeling for computation of confined energy states in oblate spheroidal quantum dots: effect of dot size, eccentricity and surrounding matrix

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We analytically and numerically investigate the energy states of an electron confined in the conduction band of oblate spheroidal CdSe quantum dot with finite barrier height. The Schrodinger equation is solved numerically in appropriate spheroidal coordinate system. The various energy states have been calculated as a function of dot volume and eccentricity of the spheroid. It is observed that with increasing the volume of the quantum dot, the energy decreases. However, with the increasing eccentricity, the energy increases. We also found that the energy states corresponding to lower value of \(m\) have higher energy and higher value of \(m\) have lower energy. In addition, we obtain transition energies for (1S-1P) and (1P-1D) transitions and we found that with increasing dot size, the transition energy decreases. Also, it is observed that surrounding matrix significantly affects the transition energy values. The results of energy states of confined electron in oblate spheroidal quantum dot are compared with that of spherical quantum dot and the results reveal that they are found at different positions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Lepadatu et al., J. Appl. Phys. 107, 033721 (2010)

    Article  ADS  Google Scholar 

  2. X. Peng et al., Nature 404, 59 (2000)

    Article  ADS  Google Scholar 

  3. G. Cantele et al., Phys. Rev. B 64(12), 125325 (2001)

    Article  ADS  Google Scholar 

  4. L.S. Li et al., Nano Lett. 1, 349 (2001)

    Article  ADS  Google Scholar 

  5. D. Maikhuri et al., J. Appl. Phys. 112, 104323 (2012)

    Article  ADS  Google Scholar 

  6. F. Trani et al., Phys. Rev. B 72, 075423 (2005)

    Article  ADS  Google Scholar 

  7. G. Cantele et al., Nano Lett. 1, 121 (2001)

    Article  ADS  Google Scholar 

  8. L.C. Lew-Yan-Voon, M. Willatzen, J. Phys. Condens. Matter. 16, 1087 (2004)

    Article  ADS  Google Scholar 

  9. L.C. Lew-Yan-Voon, M. Willatzen, J. Phys. Condens. Matter. 14, 13667 (2002)

    Article  ADS  Google Scholar 

  10. J. Even, J. Phys. A Math. General 36, 11677 (2003)

    Article  ADS  Google Scholar 

  11. G. Cantele et al., J. Phys. Condensed Matter 12, 9019 (2000)

    Article  ADS  Google Scholar 

  12. M. Alijabbari et al., Superlattices Microstruct. 133, 106180 (2019)

    Article  Google Scholar 

  13. A. Bagga et al., Nanotechnology 16, 2726 (2005)

    Article  ADS  Google Scholar 

  14. F. Dujardin, Superlattices Microstruct. 114, 296 (2018)

    Article  ADS  Google Scholar 

  15. D. Baghdasaryan et al., Phys. B 479, 85 (2015)

    Article  ADS  Google Scholar 

  16. D. Baghdasaryan et al., Eur. Phys. J. B 88, 1 (2015)

    Article  Google Scholar 

  17. A. Sivakami et al., Phys. E 40, 649 (2008)

    Article  Google Scholar 

  18. M. Willatzen, L.C. Lew-Yan-Voon, Phys. E 16, 286 (2003)

    Article  Google Scholar 

  19. A.Y. Ramos et al., J. Phys. B Atom. Mol. Opt. Phys. 47, 015502 (2013)

    Article  ADS  Google Scholar 

  20. M. Kirak et al., J. Phys. D Appl. Phys. 48, 325301 (2015)

    Article  ADS  Google Scholar 

  21. D.J. Ferreira et al., Nanotechnology 15, 975 (2004)

    Article  ADS  Google Scholar 

  22. L.W. Li, X.K. Kang, M.S. Leong, Spheroidal wave functions in electromagnetic theory (Wiley, 2002)

    Google Scholar 

  23. M. Willatzen, L.C. Lew, Y. Voon, Separable boundary-value problems in physics (Wiley, 2011)

    Book  Google Scholar 

  24. A. Gusev et al., Phys. At. Nucl. 76, 1033 (2013)

    Article  Google Scholar 

  25. D.B. Hayrapetyan, J. Cont. Phys. 42, 292 (2007)

    Article  Google Scholar 

  26. C. Delerue, M. Lannoo, Nanostructures: theory and modelling (Springer, 2004)

    Book  Google Scholar 

  27. B.S. Kim et al., J. Appl. Phys. 89, 8127 (2001)

    Article  ADS  Google Scholar 

  28. A. Salmanogli et al., J. Nanoparticle Res. 13, 1197 (2011)

    Article  ADS  Google Scholar 

  29. V.T. Rangel-Kuoppa et al., Appl. Phys. Lett. 100, 252110 (2012)

    Article  ADS  Google Scholar 

  30. D.V. Melnikov et al., Phys. Rev. B 64, 245320 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Manav Rachna University, Faridabad for providing facilities to carry out this work.

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepti Maikhuri.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maikhuri, D., Manna, S. Numerical modeling for computation of confined energy states in oblate spheroidal quantum dots: effect of dot size, eccentricity and surrounding matrix. Eur. Phys. J. Plus 136, 1196 (2021). https://doi.org/10.1140/epjp/s13360-021-02207-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02207-z

Navigation