Skip to main content
Log in

Oblate spheroidal quantum dot: electronic states, direct interband light absorption and pressure dependence

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Exitonic states and direct interband light absorption are considered in an oblate spheroidal quantum dot. The problem of finding the one electron wave function and energy spectrum has been exactly solved. Three regimes of size quantization have been considered. Absorption edge dependence on the small semiaxes of the spheroid and its hydrostatic pressure dependencies have been obtained. It has been shown that the exact value of the electron ground state in the oblate spheroidal quantum dot coincides with high accuracy to the value of ground state in strongly oblate ellipsoidal quantum dot obtained in the framework of the adiabatic approximation. The dependences of the electron ground state energy on the hydrostatic pressure and temperature have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Chakraborty, in Quantum Dots: A Survey of the Properties of Artificial Atoms (Elsevier Science, Amsterdam, 1999)

  2. A.J. Nozik, Physica E 14, 115 (2002)

    Article  ADS  Google Scholar 

  3. O. Semonin et al., Science 334, 1530 (2011)

    Article  ADS  Google Scholar 

  4. A.D. Stiff, S. Krishna, P. Bhattacharya, S. Kennerly, Appl. Phys. Lett. 79, 421 (2001)

    Article  ADS  Google Scholar 

  5. M. Zavvari, V. Ahmadi, IEEE Electron Device Lett. 34, 783 (2013)

    Article  ADS  Google Scholar 

  6. T.J. Thornton, Rep. Prog. Phys. 58, 311 (1995)

    Article  ADS  Google Scholar 

  7. D. Loss, D.P. Di Vincenzo, Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  8. C.S. Lent, P.D. Tougaw, J. Appl. Phys. 74, 6227 (1993)

    Article  ADS  Google Scholar 

  9. T. Calarco, A. Datta, P. Fedichev, E. Pazy, P. Zoller, Phys. Rev. A 68, 012310 (2003)

    Article  ADS  Google Scholar 

  10. G. Burkard, E. Hans-Andreas, D. Loss, Fortschritte der Physik 48, 965 (2000)

    Article  ADS  Google Scholar 

  11. S.N. Molotkov, S.S. Nazin, J. Exp. Theor. Phys. Lett. 63, 687 (1996)

    Article  MathSciNet  Google Scholar 

  12. H. Sato, K. Nishi, I. Ogura, S. Sugou, Y. Sugimoto, Appl. Phys. Lett. 69, 3140 (1996)

    Article  ADS  Google Scholar 

  13. P. Harrison, in Quantum Wells, Wires and Dots. Theoretical and Computational Physics (John Wiley and Sons Ltd, New York, 2005)

  14. Zhiming M. Wang, in Self-Assembled Quantum Dots (Springer Science+Business Media, New York, 2008)

  15. K.G. Dvoyan, D.B. Hayrapetyan, E.M. Kazaryan, Nanoscale Res. Lett. 4, 106 (2009)

    Article  ADS  Google Scholar 

  16. A. Bagga, S. Ghosh, P.K. Chattopadhyay, Nanotechnology 16, 2726 (2005)

    Article  ADS  Google Scholar 

  17. D.B. Hayrapetyan, J. Cont. Phys. 42, 292 (2007)

    Article  Google Scholar 

  18. D.B. Hayrapetyan, K.G. Dvoyan, E.M. Kazaryan, J. Cont. Phys. 42, 151 (2007)

    Article  Google Scholar 

  19. A.A. Gusev et al., Phys. Atom. Nucl. 76, 1033 (2013)

    Article  ADS  Google Scholar 

  20. M. Tshipa, Indian J. Phys. 86, 807 (2012)

    Article  ADS  Google Scholar 

  21. D.B. Hayrapetyan, E.M. Kazaryan, H.A. Sarkisyan, J. Cont. Phys. 48, 32 (2013)

    Article  Google Scholar 

  22. B. Çakır, Y. Yusuf, Ö. Ayhan, Physica B 458, 138 (2015)

    Article  Google Scholar 

  23. Y. Yusuf, B. Çakır, Ö. Ayhan, Comput. Phys. Commun. 188, 88 (2015)

    Article  ADS  Google Scholar 

  24. Al.L. Efros, A.L. Efros, Fiz. Tekh. Poluprovodn. 16, 1209 (1982) [Sov. Phys. Semicond. 16, 772 (1982)]

    Google Scholar 

  25. T. Unold, K. Mueller, C. Lienau, T. Elsaesser, A.D. Wieck, Phys. Rev. Lett. 94, 137404 (2005)

    Article  ADS  Google Scholar 

  26. C. Flammer, Spheroidal Wave Functions (Courier Corporation, 2014)

  27. M. Abramowitz, I. Stegun, Handbook of mathematical functions (Applied Mathematics Series, 1966)

  28. N. Raigoza, A. Morales, L.A. Montes, N. Porras-Montenegro, C.A. Duque, Phys. Rev. B 69, 045323 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Hayrapetyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghdasaryan, D., Hayrapetyan, D. & Kazaryan, E. Oblate spheroidal quantum dot: electronic states, direct interband light absorption and pressure dependence. Eur. Phys. J. B 88, 223 (2015). https://doi.org/10.1140/epjb/e2015-60284-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60284-1

Keywords

Navigation