Skip to main content
Log in

Localization of Carriers in Quantum Dots with Uniaxial Anisotropy of Shape and Composition

  • METALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electronic and hole states in quantum dots (QD) of cubic II–VI semiconductors with a spheroidal shape and uniaxial anisotropy have been studied theoretically. The smooth potential energy profiles simulated by the Gauss function in all three spatial directions are considered. The energy level lowering and the energy splitting of the hole state from the valence band top Γ8 by momentum 3/2 into the states with projections ±3/2, ±1/2 on the anisotropy axis are analyzed. The QD anisotropies of three types are considered: the QD size anisotropy, the QD potential barrier anisotropy, and the combined anisotropy. In the first case, flattened quantum dots, in which the characteristic size in the structure plane is larger than the size along the anisotropy axis, are considered. In the second case, QDs, in which the potential barrier height in the plane is lower than that along the anisotropy axis, are considered. In the third case, flattened quantum dots with the anisotropy of the size and the potential barrier are considered. The conditions of the charge carrier localization inside QD have been found, and the influence of the form and composition anisotropies on the energies of exciton transitions in the structures with CdxZn1 – xSe quantum dots are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Single Semiconductor Quantum Dots, Ed. by P. Michler (Springer, Berlin, 2009).

    Google Scholar 

  2. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, Rev. Sci. Instrum. 82, 071101 (2011).

    Article  ADS  Google Scholar 

  3. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, Phys. Rev. Lett. 85, 2733 (2000).

    Article  ADS  Google Scholar 

  4. V. Giovannetti, S. Lloyd, and L. Maccone, Science (Washington, DC, U. S.) 306, 1330 (2004).

    Article  ADS  Google Scholar 

  5. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, Nature (London, U.K.) 419, 594 (2002).

    Article  ADS  Google Scholar 

  6. Y. M. He, Y. He, Y.-J. Wei, D. Wu, M. Atature, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.‑W. Pan, Nat. Nanotechnol. 8, 213 (2013).

    Article  ADS  Google Scholar 

  7. G. Sallen, A. Tribu, T. Aichele, R. Andrè, L. Besombes, C. Bougerol, S. Tatarenko, K. Kheng, and J. Ph. Poizat, Phys. Rev. B 80, 085310 (2009).

    Article  ADS  Google Scholar 

  8. O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, and T. Kümmell, Appl. Phys. Lett. 100, 061114 (2012).

    Article  ADS  Google Scholar 

  9. W. Quitsch, T. Kimmell, A. Gust, C. Kruse, D. Hommel, and G. Bacher, Appl. Phys. Lett. 105, 091102 (2014).

    Article  ADS  Google Scholar 

  10. A. A. Toropov, M. V. Rakhlin, K. G. Belyaev, S. V. So-rokin, G. V. Klimko, S. V. Gronin, I. V. Sedova, I. S. Mukhin, T. V. Shubina, and S. V. Ivanov, J. Phys.: Conf. Ser. 917, 022001 (2017).

    Google Scholar 

  11. S. V. Ivanov, A. A. Toropov, T. V. Shubina, S. V. So-rokin, A. V. Lebedev, I. V. Sedova, and P. S. Kop’ev, J. Appl. Phys. 83, 3168 (1998).

    Article  ADS  Google Scholar 

  12. F. Gindele, U. Woggon, W. Langbein, J. M. Hvam, K. Leonardi, D. Hommel, and H. Selke, Phys. Rev. B 60, 8773 (1999).

    Article  ADS  Google Scholar 

  13. A. Klochikhin, A. Reznitsky, B. Dal Don, H. Priller, H. Kalt, and C. Klingshirn, Phys. Rev. B 69, 085308 (2004).

    Article  ADS  Google Scholar 

  14. M. V. Rakhlin, K. G. Belyaev, I. V. Sedova, S. V. So-rokin, S. V. Gronin, A. A. Usikova, A. A. Sitnikova, P. N. Brunkov, S. V. Ivanov, and A. A. Toropov, Phys. Status Solidi C 13, 514 (2016).

    Article  ADS  Google Scholar 

  15. V. Türck, S. Rodt, O. Stier, R. Heitz, U. W. Pohl, and R. Engelhardt, D. Bimberg. J. Lumin. 87–89, 337 (2000).

    Article  Google Scholar 

  16. L. Besombes, K. Kheng, L. Marsal, and H. Mariette, Phys. Rev. B 63, 155307 (2001).

    Article  ADS  Google Scholar 

  17. M. V. Rakhlin, K. G. Belyaev, G. V. Klimko, I. S. Mu-khin, D. A. Kirilenko, T. V. Shubina, S. V. Ivanov, and A. A. Toropov, Sci. Rep. 8, 5229 (2018).

    Article  Google Scholar 

  18. N. Peranio, A. Rosenauer, D. Gerthsen, S. V. Sorokin, I. V. Sedova, and S. V. Ivanov, Phys. Rev. B 61, 16015 (2000).

    Article  ADS  Google Scholar 

  19. D. Litvinov, A. Rosenauer, D. Gerthsen, and N. N. Le-dentsov, Phys. Rev. B 61, 16819 (2000).

    Article  ADS  Google Scholar 

  20. D. Litvinov, M. Schowalter, A. Rosenauer, B. Daniel, J. Fallert, W. Löffler, H. Kalt, and M. Hetterich, Phys. Status Solidi A 205, 2892 (2008).

    Article  ADS  Google Scholar 

  21. S. V. Sorokin, I. V. Sedova, K. G. Belyaev, M. V. Rakhlin, M. A. Yagovkina, A. A. Toropov, and S. V. Ivanov, Tech. Phys. Lett. 43, 267 (2017).

    Article  Google Scholar 

  22. T. V. Shubina, A. V. Rodina, M. A. Semina, A. A. Go-lovatenko, A. A. Toropov, M. V. Rakhlin, I. V. Sedova, S. V. Sorokin, S. V. Gronin, A. A. Sitnikova, D. I. Ku-ritsyn, S. M. Sergeev, Z. F. Krasil’nik, and S. V. Ivanov, Phys. Status Solidi B 253, 1485 (2016).

    Article  ADS  Google Scholar 

  23. A. A. Golovatenko, M. A. Semina, A. V. Rodina, and T. V. Shubina, Acta Phys. Polon. A 129, 107 (2016).

    Article  Google Scholar 

  24. T. V. Shubina, K. G. Belyaev, M. A. Semina, A. V. Ro-dina, A. A. Golovatenko, A. A. Toropov, S. V. Sorokin, I. V. Sedova, V. Yu. Davydov, A. N. Smirnov, P. C. Ko-p’ev, and S. V. Ivanov, Phys. Solid State 58, 2256 (2016).

    Article  ADS  Google Scholar 

  25. M. A. Semina, A. A. Golovatenko, and A. V. Rodina, Phys. Rev. B 93, 045409 (2016).

    Article  ADS  Google Scholar 

  26. A. A. Golovatenko, M. A. Semina, A. V. Rodina, and T. V. Shubina, Phys. Solid State 60, 1510 (2018).

    Article  ADS  Google Scholar 

  27. S. Adachi, Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors (Wiley, Chippenham, 2009).

    Book  Google Scholar 

  28. J. M. Luttinger, Phys. Rev. 102, 1030 (1956).

    Article  ADS  Google Scholar 

  29. B. L. Gel’mont and M. I. D’yakonov, Sov. Phys. Semicond. 5, 905 (1971).

    Google Scholar 

  30. Al. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996).

Download references

FUNDING

This work was supported by the Russian Science Foundation, project no. 14-22-00107.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Semina.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semina, M.A., Golovatenko, A.A., Shubina, T.V. et al. Localization of Carriers in Quantum Dots with Uniaxial Anisotropy of Shape and Composition. Phys. Solid State 61, 506–514 (2019). https://doi.org/10.1134/S1063783419040267

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419040267

Navigation