Skip to main content
Log in

Soliton and quasi-periodic wave solutions for b-type Kadomtsev–Petviashvili equation

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, truncated Laurent expansion is used to obtain the bilinear equation of a nonlinear evolution equation. As an application of Hirota’s method, multisoliton solutions are constructed from the bilinear equation. Extending the application of Hirota’s method and employing multidimensional Riemann theta function, one and two-periodic wave solutions are also obtained in a straightforward manner. The asymptotic behavior of one and two-periodic wave solutions under small amplitude limits is presented, and their relations with soliton solutions are also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M Ablowitz and P Clarkson Solitons, Nonlinear Evolution Equation and Inverse Scattering (ed.) J W S Cassels (Cambridge: Cambridge University Press) (1999)

  2. C Gardner, J Greene, M D Kruskal and R M Miura Phys. Rev. Lett. 19 1095 (1967)

    Article  ADS  Google Scholar 

  3. G Lamb Jr Rev. Mod. Phys. 43 99 (1971)

    Article  ADS  Google Scholar 

  4. C Rogers and W F Shadwick Bäcklund transformations and their applications 161 (ed.) R Bellman (New York: Academic Press New York) (1982)

  5. M Wadati J. Phys. Soc. Jpn. 38 673 (1975)

    Article  ADS  Google Scholar 

  6. Y Li and J Zhang Phys. Lett. A 284 253 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  7. Y Li, W Ma and J E Zhang Phys. Lett. A 275 60 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  8. V B Matveev and M Salle Darboux transformations and solitons (ed.) M Wadati (Germany: Springer-Verlag) (1991)

  9. R Hirota The Direct Method in Soliton Theory 155 (eds.) B Bollobas, W Fulton, A Katok, F Kirwan, P Sarnak and B Simon (Cambridge: Cambridge University Press) (2004)

  10. Y Matsuno Bilinear transformation method 174 (ed.) R Bellman (Florida: Academic Press Inc.) (1984)

  11. G Bluman and S Anco Symmetry and Integration Methods for Differential Equations 154 (eds.) S S Antman, J E Marsden and L Sirovich (New York: Springer-Verlag Inc) (2002)

  12. P Olver Applications of Lie Groups to Differential Equations 107 (eds.) S Axler, F W Gehring and K A Ribet (New York: Springer-Verlag Inc.) (1986)

  13. S Tian, Y Zhang, B Feng and H Zhang Chin. Ann. Math. Ser. B 36 543 (2015)

    Article  MathSciNet  Google Scholar 

  14. J M Tu, S F Tian, M J Xu and T T Zhang Appl. Math. Comput. 275 345 (2016)

    MathSciNet  Google Scholar 

  15. G Ebadi, A Mojaver, S Johnson, S Kumar and A Biswas Indian J. Phys. 86 1115 (2012)

    Article  ADS  Google Scholar 

  16. A Bhrawy, M Abdelkawy, S Kumar and A Biswas Rom. J. Phys. 58 729 (2013)

    Google Scholar 

  17. A Biswas, E Krishnan, P Suarez, A Kara and S Kumar Indian J. Phys. 87 169 (2013)

    Article  ADS  Google Scholar 

  18. A Biswas, D Milovic, S Kumar and A Yildirim Indian J. Phys. 87 567 (2013)

    Article  ADS  Google Scholar 

  19. E Krishnan, A Kara, S Kumar and A Biswas Indian J. Phys. 87 1233 (2013)

    Article  ADS  Google Scholar 

  20. S F Tian, Z Wang and H Q Zhang J. Math. Anal. Appl. 366 646 (2010)

    Article  MathSciNet  Google Scholar 

  21. X B Wang, S F Tian, M J Xua and T T Zhang Appl. Math. Comput. 283 216 (2016)

    MathSciNet  Google Scholar 

  22. J M Tu, S F Tian, M J Xu and T T Zhang Taiwan. J. Math. 20 823 (2016)

    Article  Google Scholar 

  23. S F Tian The Mixed Coupled Nonlinear Schrödinger Equation on the Half-Line via the Fokas Method Proc R Soc A (The Royal Society) 472, p 0588 (2016)

  24. S F Tian J. Differ. Equ. 262 506 (2017)

    Article  ADS  Google Scholar 

  25. X B Wang, S F Tian, C Y Qin and T T Zhang Appl. Math. Lett. 68 40 (2016)

    Article  Google Scholar 

  26. F Awawdeh, H Jaradat and S Al-Shara Eur. Phys. J. D 66 40 (2012)

    Article  ADS  Google Scholar 

  27. X Gui-Qiong Chin. Phys. B 22 050203 (2013)

    Article  Google Scholar 

  28. Q Miao, Y Wang, Y Chen and Y Yang Comput. Phys. Commun. 185 357 (2014)

    Article  ADS  Google Scholar 

  29. Y Wang, C Temuer and Y Yang Appl. Math. Lett. 29 13 (2014)

    Article  MathSciNet  Google Scholar 

  30. X Yu, Y Gao, Z Sun and Y Liu Phys. Scr. 81 045402 (2010)

    Article  ADS  Google Scholar 

  31. G Q Xu and A M Wazwaz Math. Methods Appl. Sci. 39 2716 (2015)

    Article  Google Scholar 

  32. M Singh Nonlinear Dyn. 84 875 (2016)

    Article  Google Scholar 

  33. M Singh and R Gupta Commun. Nonlinear Sci. Numer. Simul. 37 362 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  34. M Singh and R Gupta Nonlinear Dyn. 86 1171 (2016)

    Article  Google Scholar 

  35. A M Wazwaz J. Ocean Eng. Sci. 1 181 (2016)

  36. A M Wazwaz Mod. Phys. Lett. B 30 1650198 (2016)

    Article  ADS  Google Scholar 

  37. A Wazwaz Indian J. Phys. 90 577 (2016)

    Article  ADS  Google Scholar 

  38. T T Zhang, P L Ma, M J Xu, X Y Zhang and S F Tian Mod. Phys. Lett. B 29 1550051 (2015)

    Article  ADS  Google Scholar 

  39. L L Feng, S F Tian, X B Wang and T T Zhang Appl. Math. Lett. 65 90 (2017)

    Article  MathSciNet  Google Scholar 

  40. A Nakamura J. Phys. Soc. Jpn. 47 1701 (1979)

    Article  ADS  Google Scholar 

  41. A Nakamura J. Phys. Soc. Jpn. 48 1365 (1980)

    Article  ADS  Google Scholar 

  42. S Tian and H Zhang J. Phys. A Math. Theor. 45 055203 (2012)

    Article  ADS  Google Scholar 

  43. L Luo and E Fan Phys. Lett. A 374 3001 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  44. E Fan and Y Hon Phys. Rev. E 78 036607 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  45. S F Tian and H Q Zhang Stud. Appl. Math. 132 212 (2014)

    Article  MathSciNet  Google Scholar 

  46. S F Tian and H Q Zhang J. Math. Anal. Appl. 371 585 (2010)

    Article  MathSciNet  Google Scholar 

  47. J M Tu, S F Tian, M J Xu, X Q Song and T T Zhang Nonlinear Dyn. 83 1199 (2016)

    Article  Google Scholar 

  48. J M Tu, S F Tian, M J Xu, P L Ma and T T Zhang Comput. Math. Appl. 72 2486 (2016)

    Article  MathSciNet  Google Scholar 

  49. J Hietarinta Searching for Integrable PDE’s by Testing Hirota’s Three-Soliton Condition Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation (Bonn, West Germany: ACM) (1991)

  50. J Hietarinta Phys. AUC 15 31 (2005)

  51. J Weiss, M Tabor and G Carnevale J. Math. Phys. 24 522 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  52. D Mumford Tata Lectures on Theta I 28 (Boston: Modern Birkhäuser Classics) (1983)

Download references

Acknowledgements

Rajesh Kumar Gupta thanks the University Grant Commission for sponsoring this research under Research Award Scheme (F. 30-105/2016 (SA-II)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjit Singh.

Appendix

Appendix

$$\begin{aligned} a_{11}=&\sum _{n=-\infty }^{\infty }(-16\,{\pi }^{2}n_{{1}}n_{{2}}\alpha _{{2}}-16\,{\pi }^{2}{n_{{1}}}^{2} \alpha _{{1}})\mathfrak {I}_{1}(n) \end{aligned}$$
(45)
$$\begin{aligned} a_{12}=&\sum _{n=-\infty }^{\infty }(-16\,{\pi }^{2}n_{{2}}n_{{1}}\alpha _{{1}}-16\,{\pi }^{2}{n_{{2}}}^{2} \alpha _{{2}})\mathfrak {I}_{1}(n), a_{13}=\sum _{n=-\infty }^{\infty }\mathfrak {I}_{1}(n)\end{aligned}$$
(46)
$$\begin{aligned} a_{14}=&\sum _{n=-\infty }^{\infty }(-480\,{\pi }^{2}{n_{{1}}}^{2}{\alpha _{{1}}}^{2}-960\,{\pi }^{2}n_{{1}} \alpha _{{1}}n_{{2}}\alpha _{{2}}-480\,{\pi }^{2}{n_{{2}}}^{2}{\alpha _{{ 2}}}^{2})\mathfrak {I}_{1}(n)\end{aligned}$$
(47)
$$\begin{aligned} b_{1}=&\sum _{n=-\infty }^{\infty }(3840\,{\pi }^{4}{n_{{1}}}^{2}\alpha _{{1}}{n_{{2}}}^{2}{\alpha _{{2}}}^{ 2}\omega _{{1}}+3840\,{\pi }^{4}n_{{1}}\alpha _{{1}}{n_{{2}}}^{3}{\alpha _{{2}}}^{2}\omega _{{2}}-4096\,{\pi }^{6}{n_{{1}}}^{6}{\alpha _{{1}}}^{6 }\nonumber -24576\,{\pi }^{6}{n_{{1}}}^{5}{\alpha _{{1}}}^{5}n_{{2}}\alpha _{{2}}\\ {}&+\cdot \cdot \cdot \cdot +1280\,{\pi }^{4}{n_{{2}}} ^{4}{\alpha _{{2}}}^{3}\omega _{{2}}+80\,{\pi }^{2}{n_{{2}}}^{2}{\omega _ {{2}}}^{2} )\mathfrak {I}_{1}(n)\end{aligned}$$
(48)
$$\begin{aligned} a_{21}=&\sum _{n=-\infty }^{\infty }(16\,{\pi }^{2}\alpha _{{1}}n_{{1}}-16\,{\pi }^{2}\alpha _{{1}}{n_{{1}}}^ {2}-16\,{\pi }^{2}n_{{2}}\alpha _{{2}}n_{{1}}+8\,{\pi }^{2}n_{{2}} \alpha _{{2}}-4\,{\pi }^{2}\alpha _{{1}})\mathfrak {I}_{2}(n)\end{aligned}$$
(49)
$$\begin{aligned} a_{22}=&\sum _{n=-\infty }^{\infty }(8\,{\pi }^{2}\alpha _{{1}}n_{{2}}-16\,{\pi }^{2}\alpha _{{1}}n_{{1}}n_{{ 2}}-16\,{\pi }^{2}{n_{{2}}}^{2}\alpha _{{2}})\mathfrak {I}_{2}(n), a_{23}=\sum _{n=-\infty }^{\infty }\mathfrak {I}_{2}(n)\end{aligned}$$
(50)
$$\begin{aligned} a_{24}=&\sum _{n=-\infty }^{\infty }(-480\,{\pi }^{2}{\alpha _{{1}}}^{2}{n_{{1}}}^{2}+480\,{\pi }^{2}{\alpha _{{1}}}^{2}n_{{1}}-960\,{\pi }^{2}\alpha _{{1}}n_{{1}}n_{{2}}\alpha _{{2 }}\nonumber \\&-120\,{\pi }^{2}{\alpha _{{1}}}^{2}+480\,{\pi }^{2}\alpha _{{1}}n_{{2} }\alpha _{{2}}-480\,{\pi }^{2}{n_{{2}}}^{2}{\alpha _{{2}}}^{2})\mathfrak {I}_{2}(n)\end{aligned}$$
(51)
$$\begin{aligned} b_{2}=&\sum _{n=-\infty }^{\infty }(3840\,{\pi }^{4}{\alpha _{{1}}}^{2}{n_{{1}}}^{3}n_{{2}}\alpha _{{2}} \omega _{{1}}-5760\,{\pi }^{4}{\alpha _{{1}}}^{2}{n_{{1}}}^{2}n_{{2}} \alpha _{{2}}\omega _{{1}}+3840\,{\pi }^{4}{\alpha _{{1}}}^{2}{n_{{1}}}^{ 2}{n_{{2}}}^{2}\alpha _{{2}}\omega _{{2}}\nonumber \\&+......+160\,{\pi }^{2}\omega _{{1}}n_{{1}}n_{{2}} \omega _{{2}}+1280\,{\pi }^{4}{\alpha _{{1}}}^{3}{n_{{1}}}^{3}n_{{2}}\omega _{{2}} )\mathfrak {I}_{2}(n)\end{aligned}$$
(52)
$$\begin{aligned} a_{31}=&\sum _{n=-\infty }^{\infty }(-16\,{\pi }^{2}n_{{2}}\alpha _{{2}}n_{{1}}-16\,{\pi }^{2}\alpha _{{1}}{n _{{1}}}^{2}+8\,{\pi }^{2}\alpha _{{2}}n_{{1}})\mathfrak {I}_{3}(n)\end{aligned}$$
(53)
$$\begin{aligned} a_{32}=&\sum _{n=-\infty }^{\infty }(8\,{\pi }^{2}\alpha _{{1}}n_{{1}}-16\,{\pi }^{2}{n_{{2}}}^{2}\alpha _{{2 }}+16\,{\pi }^{2}n_{{2}}\alpha _{{2}}-16\,{\pi }^{2}\alpha _{{1}}n_{{1}} n_{{2}}-4\,{\pi }^{2}\alpha _{{2}})\mathfrak {I}_{3}(n)\end{aligned}$$
(54)
$$\begin{aligned} a_{33}=&\sum _{n=-\infty }^{\infty }\mathfrak {I}_{3}(n)\end{aligned}$$
(55)
$$\begin{aligned} a_{34}=&\sum _{n=-\infty }^{\infty }(-480\,{\pi }^{2}{n_{{1}}}^{2}{\alpha _{{1}}}^{2}-960\,{\pi }^{2}n_{{1}} \alpha _{{1}}\alpha _{{2}}n_{{2}}+480\,{\pi }^{2}n_{{1}}\alpha _{{1}} \alpha _{{2}}-480\,{\pi }^{2}{\alpha _{{2}}}^{2}{n_{{2}}}^{2}\nonumber \\&+480\,{\pi }^{2}{\alpha _{{2}}}^{2}n_{{2}}-120\,{\pi }^{2}{\alpha _{{2}}}^{2})\mathfrak {I}_{3}(n) \end{aligned}$$
(56)
$$\begin{aligned} b_{3}=&\sum _{n=-\infty }^{\infty }(3840\,{\pi }^{4}{\alpha _{{1}}}^{2}{n_{{1}}}^{3}n_{{2}}\alpha _{{2}} \omega _{{1}}+3840\,{\pi }^{4}{\alpha _{{1}}}^{2}{n_{{1}}}^{2}{n_{{2}}}^ {2}\alpha _{{2}}\omega _{{2}}-3840\,{\pi }^{4}{n_{{1}}}^{2}{\alpha _{{1}} }^{2}\alpha _{{2}}n_{{2}}\omega _{{2}}\nonumber \\&+3840\,{\pi }^{4}\alpha _{{1}}{n_{{ 1}}}^{2}{n_{{2}}}^{2}{\alpha _{{2}}}^{2}\omega _{{1}}+.......+1280\,{\pi }^{4}{\alpha _{{1}}}^{3}{n_{{1}}}^{3}n_{{2}}\omega _{{2}})\mathfrak {I}_{3}(n) \end{aligned}$$
(57)
$$\begin{aligned} a_{41}=&\sum _{n=-\infty }^{\infty }(8\,{\pi }^{2}\alpha _{{2}}n_{{1}}+16\,{\pi }^{2}\alpha _{{1}}n_{{1}}-16 \,{\pi }^{2}\alpha _{{1}}{n_{{1}}}^{2}-16\,{\pi }^{2}\alpha _{{2}}n_{{2} }n_{{1}}-4\,{\pi }^{2}\alpha _{{2}}+8\,{\pi }^{2}\alpha _{{2}}n_{{2}}-4 \,{\pi }^{2}\alpha _{{1}} )\mathfrak {I}_{4}(n) \end{aligned}$$
(58)
$$\begin{aligned} a_{42}=&\sum _{n=-\infty }^{\infty }(16\,{\pi }^{2}\alpha _{{2}}n_{{2}}-16\,{\pi }^{2}\alpha _{{1}}n_{{1}}n_{ {2}}-16\,{\pi }^{2}\alpha _{{2}}{n_{{2}}}^{2}-4\,{\pi }^{2}\alpha _{{1}} -4\,{\pi }^{2}\alpha _{{2}}+8\,{\pi }^{2}\alpha _{{1}}n_{{2}}+8\,{\pi }^ {2}\alpha _{{1}}n_{{1}} )\mathfrak {I}_{4}(n)\end{aligned}$$
(59)
$$\begin{aligned} a_{43}=&\sum _{n=-\infty }^{\infty }\mathfrak {I}_{4}(n)\end{aligned}$$
(60)
$$\begin{aligned} a_{44}=&\sum _{n=-\infty }^{\infty }(480\,{\pi }^{2}{\alpha _{{2}}}^{2}n_{{2}}-240\,{\pi }^{2}\alpha _{{1}} \alpha _{{2}}-480\,{\pi }^{2}{\alpha _{{2}}}^{2}{n_{{2}}}^{2}-960\,{\pi }^{2}\alpha _{{1}}n_{{1}}\alpha _{{2}}n_{{2}}+480\,{\pi }^{2}{\alpha _{{1 }}}^{2}n_{{1}}\nonumber \\ {}&-120\,{\pi }^{2}{\alpha _{{1}}}^{2}-120\,{\pi }^{2}{ \alpha _{{2}}}^{2}+480\,{\pi }^{2}\alpha _{{1}}\alpha _{{2}}n_{{2}}+480\, {\pi }^{2}\alpha _{{1}}n_{{1}}\alpha _{{2}}-480\,{\pi }^{2}{\alpha _{{1}} }^{2}{n_{{1}}}^{2} )\mathfrak {I}_{4}(n)\end{aligned}$$
(61)
$$\begin{aligned} b_{4}=&\sum _{n=-\infty }^{\infty }(-5760\,{\pi }^{4}{\alpha _{{1}}}^{2}{n_{{1}}}^{2}\alpha _{{2}}n_{{2}} \omega _{{1}}+3840\,{\pi }^{4}{\alpha _{{1}}}^{2}{n_{{1}}}^{2}\alpha _{{2 }}{n_{{2}}}^{2}\omega _{{2}}\nonumber \\&-3840\,{\pi }^{4}{\alpha _{{1}}}^{2}{n_{{1}} }^{2}\alpha _{{2}}n_{{2}}\omega _{{2}}+\cdot \cdot \cdot \cdot -24576\,{\pi }^{6}{\alpha _{{1}}}^{ 5}{n_{{1}}}^{5}\alpha _{{2}}n_{{2}}+160\,{\pi }^{2}\omega _{{1}}n_{{1}} \omega _{{2}}n_{{2}} )\mathfrak {I}_{4}(n) \end{aligned}$$
(62)

where

$$\begin{aligned} \mathfrak {I}_{1}(n)&=\wp _{11}^{n_{1}^{2}}\wp _{12}^{2n_{1}n_{2}}\wp _{22}^{n_{2}^{2}},\nonumber \\ \mathfrak {I}_{2}(n)&=\wp _{11}^{n_{1}^2+(n_{1}-1)^{2}}\wp _{12}^{2[n_{1}n_2+(n_{1}-1)n_{2}]}\wp _{22}^{2n_{2}^{2}}\nonumber \\ \mathfrak {I}_{3}(n)&=\wp _{11}^{2n_{1}^{2}}\wp _{12}^{2[n_{1}n_{2}+n_{1}(n_{2}-1)]}\wp _{22}^{n_{2}^{2}+(n_{2}-1)^{2}},\nonumber \\ \mathfrak {I}_{4}(n)&=\wp _{11}^{n_{1}^{2}+(n_{1}-1)^2}\cdot \wp _{12}^{2[n_{1}n_{2}+(n_{1}-1)(n_{2}-1)]}\cdot \wp _{22}^{n_{2}^{2}+(n_{2}-1)^2}. \end{aligned}$$
(63)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Gupta, R.K. Soliton and quasi-periodic wave solutions for b-type Kadomtsev–Petviashvili equation. Indian J Phys 91, 1345–1354 (2017). https://doi.org/10.1007/s12648-017-1035-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1035-x

Keywords

PACS No.

Navigation