Skip to main content
Log in

On the quintic time-dependent coefficient derivative nonlinear Schrödinger equation in hydrodynamics or fiber optics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Under investigation in this paper is a quintic time-dependent coefficient derivative nonlinear Schrödinger equation for certain hydrodynamic wave packets or a medium with the negative refractive index. A gauge transformation is found to obtain the equivalent form of the equation. With respect to the wave envelope for the free water surface displacement or envelope of the electric field, Painlevé integrable condition, different from that in the existing literature, is derived, with which the bilinear forms and N-soliton solutions are constructed. Asymptotic analysis illustrates that the interactions between the bright and bound solitons as well as between the bright solitons and Kuznetsov–Ma breathers are elastic with certain conditions, while some other interactions are inelastic under other conditions. Propagation paths and velocities for the solitons are both affected by the dispersion coefficient function when the relations among the coefficients are linear, or affected by the dispersion coefficient, self-steepening coefficient and cubic nonlinearity functions when the relations among the coefficients are nonlinear. Under different conditions, bell-shaped solitons can evolve into the bound solitons or Kuznetsov–Ma breathers, respectively. Interactions between the bright and parabolic (or hyperbolic) solitons are related to the dispersion coefficient, self-steepening coefficient and cubic nonlinearity functions. Compression effect on the propagation paths of the solitons, caused by the dispersion coefficient, is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. By the way, Eq. (3) has been demonstrated to belong to the Kaup–Newell hierarchy [59], and when \(\lambda (t)=\alpha (t)=1\) and \(\mu ( t )=\nu ( t ) =0\), Eq. (3) has been reduced to the Kaup–Newell equation describing the circular polarized nonlinear Alfvén waves in plasmas [60].

References

  1. Wu, X.Y., Tian, B., Yin, H.M., Du, Z.: Rogue-wave solutions for a discrete Ablowitz–Ladik equation with variable coefficients for an electrical lattice. Nonlinear Dyn. 93, 1635–1645 (2018)

    Article  MATH  Google Scholar 

  2. Wu, X.Y., Tian, B., Liu, L., Sun, Y.: Rogue waves for a variable-coefficient Kadomtsev- Petviashvili equation in fluid mechanics. Comput. Math. Appl. 72, 215–223 (2018)

    Article  MathSciNet  Google Scholar 

  3. Feng, L.L., Zhang, T.T.: Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrödinger equation. Appl. Math. Lett. 78, 133–140 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Yuan, Y.Q., Tian, B., Liu, L., Wu, X.Y., Sun, Y.: Solitons for the (2+1)-dimensional Konopelchenko–Dubrovsky equations. J. Math. Anal. Appl. 460, 476–486 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gao, X.Y.: Looking at a nonlinear inhomogeneous optical fiber through the generalized higher-order variable-coefficient Hirota equation. Appl. Math. Lett. 73, 143–149 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, X.B., Zhang, T.T., Dong, M.J.: Dynamics of the breathers and rogue waves in the higher-order nonlinear Schrödinger equation. Appl. Math. Lett. 86, 298–304 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gao, X.Y.: Mathematical view with observational/experimental consideration on certain (2+1)-dimensional waves in the cosmic/laboratory dusty plasmas. Appl. Math. Lett. 91, 165–172 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dong, M.J., Tian, S.F., Yan, X.W., Zou, L.: Solitary waves, homoclinic breather waves and rogue waves of the (3+1)-dimensional Hirota bilinear equation. Comput. Math. Appl. 75, 957–964 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, L., Tian, B., Wu, X.Y., Sun, Y.: Higher-order rogue wave-like solutions for a nonautonomous nonlinear Schrodinger equation with external potentials. Phys. A 492, 524–533 (2018)

    Article  MathSciNet  Google Scholar 

  10. Sun, Y., Tian, B., Y. Q. Yuan, Du, Z.: Semi-rational solutions for a (\(2 + 1\))-dimensional Davey-Stewartson system on the surface water waves of finite depth. Nonlinear Dynam. 94, 3029–3040 (2018)

  11. Wang, X.B., Tian, S.F., Yan, H., Zhang, T.T.: On the solitary waves, breather waves and rogue waves to a generalized (3+1)-dimensional Kadomtsev–Petviashvili equation. Comput. Math. Appl. 74, 556–563 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhao, X.H., Tian, B., Xie, X.Y., Wu, X.Y., Sun, Y., Guo, Y.J.: Solitons, Backlund transformation and Lax pair for a (\(2+1\))-dimensional Davey-Stewartson system on surface waves of finite depth. Wave. Random Complex 28, 356–366 (2018)

    Article  Google Scholar 

  13. Yan, X.W., Tian, S.F., Dong, M.J., Zhou, L., Zhang, T.T.: Characteristics of solitary wave, homoclinic breather wave and rogue wave solutions in a (2+1)-dimensional generalized breaking soliton equation. Comput. Math. Appl. 76, 179–186 (2018)

    Article  MathSciNet  Google Scholar 

  14. Yin, H.M., Tian, B., Chai, J., Wu, X.Y.: Stochastic soliton solutions for the (\(2+1\))- dimensional stochastic Broer-Kaup equations in a fluid or plasma. Appl. Math. Lett. 82, 126–131 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yin, H.M., Tian, B., Chai, J., Liu, L., Sun, Y.: Numerical solutions of a variable-coefficient nonlinear Schrodinger equation for an inhomogeneous optical fiber. Comput. Math. Appl. 76, 1827–1836 (2018)

    Article  MathSciNet  Google Scholar 

  16. Feng, L.L., Tian, S.F., Wang, X.B., Zhang, T.T.: Rogue waves, homoclinic breather waves and soliton waves for the (2+1)-dimensional B-type Kadomtsev–Petviashvili equation. Appl. Math. Lett. 65, 90–97 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu, C.C., Tian, B., Wu, X.Y., Du, Z., Zhao, X.H.: Lump wave-soliton and rogue wave-soliton interactions for a (\(3+1\))-dimensional B-type Kadomtsev-Petviashvili equation in a fluid. Chin. J. Phys. 56, 2395–2403 (2018)

    Article  MathSciNet  Google Scholar 

  18. Chen, S.S., Tian, B., Liu, L., Yuan, Y.Q., Zhang, C.R.: Conservation laws, binary Darboux transformations and solitons for a higher-order nonlinear Schrodinger system. Chaos Soliton. Fract. 118, 337–346 (2019)

    Article  MathSciNet  Google Scholar 

  19. Qin, C.Y., Tian, S.F., Wang, X.B., Zhang, T.T., Li, J.: Rogue waves, bright-dark solitons and traveling wave solutions of the (3+1)-dimensional generalized Kadomtsev–Petviashvili equation. Comput. Math. Appl. 75, 4221–4231 (2018)

    Article  MathSciNet  Google Scholar 

  20. Du, X.X., Tian, B., Wu, X.Y., Yin, H.M., Zhang, C.R.: Lie group analysis, analytic solutions and conservation laws of the (3+1)-dimensional Zakharov–Kuznetsov–Burgers equation in a collisionless magnetized electron–positron-ion plasma. Eur. Phys. J. Plus 133, 378–392 (2018)

    Article  Google Scholar 

  21. Peng, W.Q., Tian, S.F., Zhang, T.T.: Analysis on lump, lumpoff and rogue waves with predictability to the (2+1)-dimensional B-type Kadomtsev–Petviashvili equation. Phys. Lett. A 382, 2701–2708 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lan, Z.Z., Gao, B.: Lax pair, infinitely many conservation laws and solitons for a (\(2+1\))-dimensional Heisenberg ferromagnetic spin chain equation with time-dependent coefficients. Appl. Math. Lett. 79, 6–12 (2018)

    Article  MathSciNet  Google Scholar 

  23. Lan, Z.Z.: Multi-soliton solutions for a (\(2+1\))-dimensional variable-coefficient nonlinear Schrödinger equation. 86, 243–248 (2018)

  24. Lan, Z.Z., Gao, B., Du, M.J.: Dark solitons behaviors for a (\(2+1\))-dimensional coupled nonlinear Schrödinger system in an optical fiber. Chaos, Solitons and Fractals 111, 169–174 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hu, C.C., Tian, B., Wu, X.Y., Yuan, Y.Q., Du, Z.: Mixed lump-kink and rogue wave-kink solutions for a (3+1)-dimensional B-type Kadomtsev–Petviashvili equation in fluid mechanics. Eur. Phys. J. Plus 133, 40–48 (2018)

    Article  Google Scholar 

  26. Wang, X.B., Tian, S.F., Qin, C.Y., Zhang, T.T.: Characteristics of the solitary waves and rogue waves with interaction phenomena in a generalized (3+1)-dimensional Kadomtsev–Petviashvili equation. Appl. Math. Lett. 72, 58–64 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tu, J.M., Tian, S.F., Xu, M.J., Ma, P.L., Zhang, T.T.: On periodic wave solutions with asymptotic behaviors to a (3+1)-dimensional generalized B-type Kadomtsev–Petviashvili equation in fluid dynamics. Comput. Math. Appl. 72, 2486–2504 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Guo, D., Tian, S.F., Zhang, T.T., Li, J.: Modulation instability analysis and soliton solutions of an integrable coupled nonlinear Schrödinger system. Nonlinear Dyn. 94, 2749–2761 (2018)

    Article  Google Scholar 

  29. Liu, L., Tian, B., Yuan, Y.Q., Du, Z.: Dark-bright solitons and semirational rogue waves for the coupled Sasa–Satsuma equations. Phys. Rev. E 97, 052217 (2018)

    Article  MathSciNet  Google Scholar 

  30. Du, Z., Tian, B., Chai, H.P., Sun, Y., Zhao, X.H.: Rogue waves for the coupled variable- coefficient fourth-order nonlinear Schrodinger equations in an inhomogeneous optical fiber. Chaos Soliton. Fract. 109, 90–98 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Peng, W.Q., Tian, S.F., Zhang, T.T.: Dynamics of breather waves and higher-order rogue waves in a coupled nonlinear Schrödinger equation. Europhys. Lett. 123, 50005 (2018)

    Article  Google Scholar 

  32. Zhang, C.R., Tian, B., Liu, L., Chai, H.P., Du, Z.: Vector breathers with the negatively coherent coupling in a weakly birefringent fiber. Wave Motion 84, 68–80 (2019)

    Article  MathSciNet  Google Scholar 

  33. Du, Z., Tian, B., Chai, H.P., Yuan, Y.Q.: Vector multi-rogue waves for the three-coupled fourth-order nonlinear Schrödinger equations in an alpha helical protein. Commun. Nonlinear Sci. Numer. Simul. 67, 49–59 (2019)

    Article  MathSciNet  Google Scholar 

  34. Tian, S.F.: The mixed coupled nonlinear Schrödinger equation on the half-line via the Fokas method. Proc. R. Soc. A 472, 20160588 (2016)

    Article  MATH  Google Scholar 

  35. Yuan, Y.Q., Tian, B., Chai, H.P., Wu, X.Y., Du, Z.: Vector semirational rogue waves for a coupled nonlinear Schrodinger system in a birefringent fiber. Appl. Math. Lett. 87, 50–56 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tian, S.F.: Initial-boundary value problems for the general coupled nonlinear Schrödinger equations on the interval via the Fokas method. J. Differ. Equ. 262, 506–558 (2017)

    Article  MATH  Google Scholar 

  37. Zhang, C.R., Tian, B., Wu, X.Y., Yuan, Y.Q., Du, X.X.: Rogue waves and solitons of the coherently coupled nonlinear Schrodinger equations with the positive coherent coupling. Phys. Scr. 90, 095202 (2018)

    Article  Google Scholar 

  38. Tian, S.F., Zhang, T.T.: Long-time asymptotic behavior for the Gerdjikov–Ivanov type of derivative nonlinear Schrödinger equation with time-periodic boundary condition. Proc. Am. Math. Soc. 146, 1713–1729 (2018)

    Article  MATH  Google Scholar 

  39. Grecu, D., Grecu, A.T., Visinescu, A.: Madelung fluid description of a coupled system of derivative NLS equations. Rom. J. Phys. 57, 180–191 (2012)

    Google Scholar 

  40. Xu, T., Chen, Y.: Mixed interactions of localized waves in the three-component coupled derivative nonlinear Schrödinger equations. Nonlinear Dyn. 92, 2133–2142 (2018)

    Article  Google Scholar 

  41. Yu, W., Ekici, M., Mirzazadeh, M., Zhou, Q., Liu, W.J.: Periodic oscillations of dark solitons in nonlinear optics. Nonlinear Dyn. 165, 341–344 (2018)

    Google Scholar 

  42. Li, M., Tian, B., Liu, W.J., Zhang, H.Q., Wang, P.: Dark and antidark solitons in the modified nonlinear Schrödinger equation accounting for the self-steepening effect. Phys. Rev. E 81, 046606 (2010)

    Article  Google Scholar 

  43. Moses, J., Malomed, B.A., Wise, F.W.: Self-steepening of ultrashort optical pulses without self-phase-modulation. Phys. Rev. A 76, 021802 (2007)

    Article  Google Scholar 

  44. Chen, H.H., Lee, Y.C., Liu, C.S.: Integrability of nonlinear Hamiltonian systems by inverse scattering method. Phys. Scr. 20, 490–492 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang, Y.H., Guo, L.J., He, J.S., Zhou, Z.X.: Darboux transformation of the second-type derivative nonlinear Schrödinger equation. Lett. Math. Phys. 105, 853–891 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Triki, H., Alqahtani, R.T., Zhou, Q., Biswas, A.: New envelope solitons for Gerdjikov–Ivanov model in nonlinear fiber optics. Superlattices Microstruct. 111, 326–334 (2017)

    Article  Google Scholar 

  47. Lü, X., Ma, W.X., Yu, J., Lin, F.H., Khalique, C.M.: Envelope bright- and dark-soliton solutions for the GerdjikovIvanov model. Nonlinear Dyn. 82, 1211–1220 (2015)

    Article  Google Scholar 

  48. Rogers, C., Chow, K.W.: Localized pulses for the quintic derivative nonlinear Schrödinger equation on a continuous-wave background. Phys. Rev. E 86, 037601 (2012)

    Article  Google Scholar 

  49. Chow, K.W., Yip, L.P., Grimshaw, R.: Novel solitary pulses for a variable-coefficient derivative nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 76, 074004 (2007)

    Article  Google Scholar 

  50. Grimshaw, R.H.J., Annenkov, S.Y.: Water wave packets over variable depth: water wave packets over variable depth. Stud. Appl. Math. 126, 409–427 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Triki, H., Wazwaz, A.M.: A new trial equation method for finding exact chirped soliton solutions of the quintic derivative nonlinear Schrödinger equation with variable coefficients. Wave Random Complex 27, 153–162 (2017)

    Article  MATH  Google Scholar 

  52. Musette, M.: Painlevé Analysis for Nonlinear Partial Differential Equations. Springer, Berlin (1998)

    MATH  Google Scholar 

  53. Schmitz, R.: The WTC and ARS Painlevé tests. Appl. Math. Lett. 10, 5–9 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  54. Ding, C.Y., Zhao, D., Luo, H.G.: Painlevé integrability of two-component nonautonomous nonlinear Schrödinger equations. J. Phys. A. 45, 115203 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. Ablowitz, M.J., Segur, H.: Exact linearization of a Painlevé transcendent. Phys. Rev. Lett 38, 1103–1106 (1977)

    Article  MathSciNet  Google Scholar 

  56. Guo, R., Hao, H.Q.: Breathers and multi-soliton solutions for the higher-order generalized nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 18, 2426–2435 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  57. Yu, X., Gao, Y.T., Sun, Z.Y., Meng, X.H., Liu, Y., Feng, Q., Wang, M.Z.: N-soliton solutions for the (2+1)-dimensional Hirota–Maccari equation in fluids, plasmas and optical fibers. J. Math. Anal. Appl. 378, 519–527 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Yajima, T.: Derivative nonlinear Schrödinger type equations with multiple components and their solutions. J. Phys. Soc. Jpn. 64, 1901–1909 (1995)

    Article  MATH  Google Scholar 

  59. Pashaev, O.K., Lee, J.H.: Relativistic DNLS and Kaup–Newell hierarchy. Symmetry Integr. Geom. 13, 058 (2017)

    MathSciNet  MATH  Google Scholar 

  60. Kaup, D.J., Newell, A.C.: An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 19, 798–801 (1978)

    Article  MATH  Google Scholar 

  61. Hirota, R., Nagai, A., Nimmo, J.J.C., Gilson, C.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the each member of our discussion group for their valuable suggestions. This work has been supported by the National Natural Science Foundation of China under Grant No. 11772017 and by the Fundamental Research Funds for the Central Universities under Grant No. 50100002016105010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Tian Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, TT., Gao, YT., Feng, YJ. et al. On the quintic time-dependent coefficient derivative nonlinear Schrödinger equation in hydrodynamics or fiber optics. Nonlinear Dyn 96, 229–241 (2019). https://doi.org/10.1007/s11071-019-04786-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04786-0

Keywords

Navigation