Skip to main content
Log in

Writhing and hockling instabilities in twisted elastic fibers

  • Regular Article – Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The buckling and twisting of slender, elastic fibers is a deep and well-studied field. A slender elastic rod that is twisted with respect to a fixed end will spontaneously form a loop, or hockle, to relieve the torsional stress that builds. Further twisting results in the formation of plectonemes—a helical excursion in the fiber that extends with additional twisting. Here we use an idealized, micron-scale experiment to investigate the energy stored, and subsequently released, by hockles and plectonemes as they are pulled apart, in analogy with force spectroscopy studies of DNA and protein folding. Hysteresis loops in the snapping and unsnapping inform the stored energy in the twisted fiber structures.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Yu, J.A. Hanna, Bifurcations of buckled, clamped anisotropic rods and thin bands under lateral end translations. J. Mech. Phys. Solids 122, 657–685 (2019)

    Article  ADS  Google Scholar 

  2. A.R. Champneys, J.M.T. Thompson, A multiplicity of localized buckling modes for twisted rod equations. Proc. R. Soc. Lond. A 452(1954), 2467–2491 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. J.M.T. Thompson, A.R. Champneys, From helix to localized writhing in the torsional post-buckling of elastic rods. Proc. R. Soc. Lond. A 452(1944), 117–138 (1996)

    Article  ADS  MATH  Google Scholar 

  4. J. Coyne, Analysis of the formation and elimination of loops in twisted cable. IEEE J. Ocean. Eng. 15(2), 72–83 (1990)

    Article  ADS  Google Scholar 

  5. M.A. Dias, B. Audoly, “Wunderlich meet Kirchhoff”: a general and unified description of elastic ribbons and thin rods. J. Elast. 119(1–2), 49–66 (2015)

  6. G.H.M. van der Heijden, S. Neukirch, V.G.A. Goss, J.M.T. Thompson, Instability and self-contact phenomena in the writhing of clamped rods. Int. J. Mech. Sci. 45(1), 161–196 (2003)

    Article  MATH  Google Scholar 

  7. G.H.M. Van der Heijden, J.M.T. Thompson, Lock-on to tape-like behaviour in the torsional buckling of anisotropic rods, in Localization and Solitary Waves in Solid Mechanics. ed. by A.R. Champneys, G.W. Hunt, J.M.T. Thompson (World Scientific, Singapore, 1999), pp. 133–156

  8. N. Clauvelin, B. Audoly, S. Neukirch, Matched asymptotic expansions for twisted elastic knots: a self-contact problem with non-trivial contact topology. J. Mech. Phys. Solids 57(9), 1623–1656 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. M. Gazzola, L.H. Dudte, A.G. McCormick, L. Mahadevan, Forward and inverse problems in the mechanics of soft filaments. R. Soc. Open Sci. 5(6), 171628 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. V.G.A. Goss, G.H.M. van der Heijden, J.M.T. Thompson, S. Neukirch, Experiments on snap buckling, hysteresis and loop formation in twisted rods. Exp. Mech. 45(2), 101–111 (2005)

    Article  Google Scholar 

  11. D.M. Stump, The hockling of cables: a problem in shearable and extensible rods. Int. J. Solids Struct. 37(3), 515–533 (2000)

    Article  MATH  Google Scholar 

  12. A.L. Ross, Cable kinking analysis and prevention. J. Eng. Ind. 99(1), 112–115 (1977)

    Article  Google Scholar 

  13. A. Ghatak, L. Mahadevan, Solenoids and plectonemes in stretched and twisted elastomeric filaments. Phys. Rev. Let. 95, 057801 (2005)

    Article  ADS  Google Scholar 

  14. M. Nizette, A. Goriely, Towards a classification of Euler–Kirchhoff filaments. J. Math. Phys. 40(6), 2830–2866 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. S. Neukirch, M.E. Henderson, Classification of the spatial equilibria of the clamped elastica: symmetries and zoology of solutions. J. Elast. 68(1–3), 95–121 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. M.K. Jawed, P. Dieleman, B. Audoly, P.M. Reis, Untangling the mechanics and topology in the frictional response of long overhand elastic knots. Phys. Rev. Lett. 115, 118302 (2015)

    Article  ADS  Google Scholar 

  17. H. Wada, Structural mechanics and helical geometry of thin elastic composites. Soft Matter 12(35), 7386–7397 (2016)

    Article  ADS  Google Scholar 

  18. W.B. Fraser, G.H.M. van der Heijden, On the theory of localised snarling instabilities in false-twist yarn processes. J. Eng. Math. 61(1), 81–95 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. N.S. Ermolaeva, J. Regelink, M.P.M. Krutzen, Hockling behaviour of single- and multiple-rope systems. Eng. Fail. Anal. 15(1–2), 142–153 (2008)

    Article  Google Scholar 

  20. M. Habibi, N.M. Ribe, D. Bonn, Coiling of elastic ropes. Phys. Rev. Lett. 99(15), 154302 (2007)

    Article  ADS  Google Scholar 

  21. T. Yabuta, Submarine cable kink analysis. Bull. JSME 27(231), 1821–1828 (1984)

    Article  Google Scholar 

  22. N. Kojima, Cable kink analysis; cable loop stability under tension. J. Appl. Mech. 49, 585 (1982)

    Google Scholar 

  23. J.F. Marko, S. Neukirch, Competition between curls and plectonemes near the buckling transition of stretched supercoiled DNA. Phys. Rev. E 85(1), 011908 (2012)

    Article  ADS  Google Scholar 

  24. W.B. Fraser, D.M. Stump, The equilibrium of the convergence point in two-strand yarn plying. Int. J. Solids Struct. 35(3–4), 285–298 (1998)

    Article  MATH  Google Scholar 

  25. P.K. Purohit, Plectoneme formation in twisted fluctuating rods. J. Mech. Phys. Solids 56(5), 1715–1729 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. N. Clauvelin, B. Audoly, S. Neukirch, Elasticity and electrostatics of plectonemic DNA. Biophys. J. 96(9), 3716–3723 (2009)

    Article  ADS  Google Scholar 

  27. S. Neukirch, J.F. Marko, Analytical description of extension, torque, and supercoiling radius of a stretched twisted DNA. Phys. Rev. Lett. 106(13), 138104 (2011)

    Article  ADS  Google Scholar 

  28. I.M. Kulić, H. Mohrbach, R. Thaokar, H. Schiessel, Equation of state of looped DNA. Phys. Rev. E 75(1), 011913 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  29. J.F. Marko, S. Neukirch, Global force-torque phase diagram for the DNA double helix: structural transitions, triple points, and collapsed plectonemes. Phys. Rev. E 88(6), 062722 (2013)

    Article  ADS  Google Scholar 

  30. M.L. Smith, T.J. Healey, Predicting the onset of DNA supercoiling using a non-linear hemitropic elastic rod. Int. J. Non-Linear Mech. 43(10), 1020–1028 (2008)

    Article  ADS  Google Scholar 

  31. B.C. Daniels, S. Forth, M.Y. Sheinin, M.D. Wang, J.P. Sethna, Discontinuities at the DNA supercoiling transition. Phys. Rev. E 80(4), 040901 (2009)

    Article  ADS  Google Scholar 

  32. M. Chamekh, S. Mani-Aouadi, M. Moakher, Stability of elastic rods with self-contact. Comput. Methods Appl. Mech. Eng. 279, 227–246 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. J.L. Silverberg, R.D. Noar, M.S. Packer, M.J. Harrison, C.L. Henley, I. Cohen, S.J. Gerbode, 3D imaging and mechanical modeling of helical buckling in Medicago truncatula plant roots. Proc. Natl. Acad. Sci. 109(42), 16794–16799 (2012)

    Article  ADS  Google Scholar 

  34. S.J. Gerbode, J.R. Puzey, A.G. McCormick, L. Mahadevan, How the cucumber tendril coils and overwinds. Science 337(6098), 1087–1091 (2012)

    Article  ADS  Google Scholar 

  35. F. Tanaka, H. Takahashi, Elastic theory of supercoiled DNA. J. Chem. Phys. 83(11), 6017–6026 (1985)

    Article  ADS  Google Scholar 

  36. B.D. Coleman, I. Tobias, D. Swigon, Theory of the influence of end conditions on self-contact in DNA loops. J. Chem. Phys. 103(20), 9101–9109 (1995)

    Article  ADS  Google Scholar 

  37. K.A. Hoffman, R.S. Manning, J.H. Maddocks, Link, twist, energy, and the stability of DNA minicircles. Biopolym. Orig. Res. Biomol. 70(2), 145–157 (2003)

    Article  Google Scholar 

  38. E.L. Starostin, Three-dimensional shapes of looped DNA. Meccanica 31(3), 235–271 (1996)

    Article  MATH  Google Scholar 

  39. M.M. Gromiha, M.G. Munteanu, A. Gabrielian, S. Pongor, Anisotropic elastic bending models of DNA. J. Biol. Phys. 22(4), 227–243 (1996)

    Article  Google Scholar 

  40. A.G. Cherstvy, Looping charged elastic rods: applications to protein-induced DNA loop formation. Eur. Biophys. J. 40(1), 69–80 (2011)

    Article  Google Scholar 

  41. I.V. Dobrovolskaia, M. Kenward, G. Arya, Twist propagation in dinucleosome arrays. Biophys. J. 99(10), 3355–3364 (2010)

    Article  ADS  Google Scholar 

  42. S. Goyal, N.C. Perkins, C.L. Lee, Nonlinear dynamics and loop formation in Kirchhoff rods with implications to the mechanics of DNA and cables. J. Comput. Phys. 209(1), 371–389 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. J. Lipfert, J.W.J. Kerssemakers, T. Jager, N.H. Dekker, Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments. Nat. Methods 7(12), 977–980 (2010)

    Article  Google Scholar 

  44. F. Mosconi, J.F. Allemand, D. Bensimon, V. Croquette, Measurement of the torque on a single stretched and twisted DNA using magnetic tweezers. Phys. Rev. Lett. 102(7), 078301 (2009)

    Article  ADS  Google Scholar 

  45. J.F. Marko, E.D. Siggia, Statistical mechanics of supercoiled DNA. Phys. Rev. E 52(3), 2912 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  46. D.M. Stump, W.B. Fraser, K.E. Gates, The writhing of circular cross-section rods: undersea cables to DNA supercoils. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454(1976), 2123–2156 (1998)

    Article  ADS  MATH  Google Scholar 

  47. M. Ganji, S.H. Kim, J. van der Torre, E. Abbondanzieri, C. Dekker, Intercalation-based single-molecule fluorescence assay to study DNA supercoil dynamics. Nano Lett. 16(7), 4699–4707 (2016)

    Article  ADS  Google Scholar 

  48. H. Brutzer, N. Luzzietti, D. Klaue, R. Seidel, Energetics at the DNA supercoiling transition. Biophys. J. 98(7), 1267–1276 (2010)

    Article  ADS  Google Scholar 

  49. C. Maffeo, R. Schöpflin, H. Brutzer, R. Stehr, A. Aksimentiev, G. Wedemann, R. Seidel, DNA-DNA interactions in tight supercoils are described by a small effective charge density. Phys. Rev. Lett. 105(15), 158101 (2010)

    Article  ADS  Google Scholar 

  50. A.R. Studart, R.M. Erb, Bioinspired materials that self-shape through programmed microstructures. Soft Matter 10(9), 1284–1294 (2014)

    Article  ADS  Google Scholar 

  51. N. Hu, R. Burgueño, Buckling-induced smart applications: recent advances and trends. Smart Mater. Struct. 24(6), 063001 (2015)

    Article  ADS  Google Scholar 

  52. M.J. Colbert, A.N. Raegen, C. Fradin, K. Dalnoki-Veress, Adhesion and membrane tension of single vesicles and living cells using a micropipette-based technique. Eur. Phys. J. E 30(2), 117 (2009)

    Article  Google Scholar 

  53. M. Backholm, O. Bäumchen, Micropipette force sensors for in vivo force measurements on single cells and multicellular microorganisms. Nat. Protoc. 14, 594–615 (2019)

    Article  Google Scholar 

  54. S.P. Timoshenko, Theory of Elasticity Engineering Societies Monographs. (McGraw-Hill, New York, 1987)

    MATH  Google Scholar 

  55. T.R. Strick, M.-N. Dessinges, G. Charvin, N.H. Dekker, J.-F. Allemand, D. Bensimon, V. Croquette, Stretching of macromolecules and proteins. Rep. Prog. Phys. 66(1), 1–45 (2003)

    Article  ADS  Google Scholar 

  56. S. Neukirch, G.H.M. van der Heijden, J.M.T. Thompson, Writhing instabilities of twisted rods: from infinite to finite length. J. Mech. Phys. Solids 50, 1175–1191 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. A. Dittmore, J. Silver, K.C. Neuman, Kinetic pathway of torsional DNA buckling. J. Phys. Chem. B 122(49), 11561–11570 (2019)

    Article  Google Scholar 

  58. P.U. Walker, W. Vanderlinden, J. Lipfert, Dynamics and energy landscape of DNA plectoneme nucleation. Phys. Rev. E 98, 042412–042425 (2018)

    Article  ADS  Google Scholar 

  59. H. Wang, H. Li, Mechanically tightening, untying and retying a protein trefoil knot by single-molecule force spectroscopy. Chem. Sci. 11, 12512–12521 (2020)

    Article  Google Scholar 

  60. K. Ott, L. Martini, J. Lipfert, U. Gerland, Dynamics of the buckling transition in double-stranded DNA and RNA. Biophys. J. 118, 1690–1701 (2020)

  61. M. Joyeux, I. Junier, Requirements for DNA-bridging proteins to act as topological barriers of the baterial genome. Biophys. J. 119, 1215–1225 (2020)

    Article  ADS  Google Scholar 

  62. A. Worcel, S. Strogatz, D. Riley, Structure of chromatin and the linking number of DNA. Proc. Natl. Acad. Sci. 78(3), 1461–1465 (1981)

    Article  ADS  Google Scholar 

  63. Y. Min, P.K. Purohit, Discontinuous growth of DNA plectonemes due to atomic scale friction. Soft Matter 14(37), 7759–7770 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kari Dalnoki-Veress.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 5720 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fortais, A., Loukiantchenko, E. & Dalnoki-Veress, K. Writhing and hockling instabilities in twisted elastic fibers. Eur. Phys. J. E 44, 149 (2021). https://doi.org/10.1140/epje/s10189-021-00135-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00135-5

Navigation