Skip to main content

Roadmap to the Morphological Instabilities of a Stretched Twisted Ribbon

  • Chapter
The Mechanics of Ribbons and Möbius Bands

Abstract

We address the mechanics of an elastic ribbon subjected to twist and tensile load. Motivated by the classical work of Green (Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 154(882):430, 1936; 161(905):197, 1937) and a recent experiment (Chopin and Kudrolli in Phys. Rev. Lett. 111(17):174302, 2013) that discovered a plethora of morphological instabilities, we introduce a comprehensive theoretical framework through which we construct a 4D phase diagram of this basic system, spanned by the exerted twist and tension, as well as the thickness and length of the ribbon. Different types of instabilities appear in various “corners” of this 4D parameter space, and are addressed through distinct types of asymptotic methods. Our theory employs three instruments, whose concerted implementation is necessary to provide an exhaustive study of the various parameter regimes: (i) a covariant form of the Föppl–von Kármán (cFvK) equations to the helicoidal state—necessary to account for the large deflection of the highly-symmetric helicoidal shape from planarity, and the buckling instability of the ribbon in the transverse direction; (ii) a far from threshold (FT) analysis—which describes a state in which a longitudinally-wrinkled zone expands throughout the ribbon and allows it to retain a helicoidal shape with negligible compression; (iii) finally, we introduce an asymptotic isometry equation that characterizes the energetic competition between various types of states through which a twisted ribbon becomes strainless in the singular limit of zero thickness and no tension.

J.C. and V.D. have contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ssFvK equations:

“small-slope” (standard) Föppl–von Kármán equations

cFvK equations:

covariant Föppl–von Kármán equations

t, W, L:

thickness, width and length of the ribbon (non-italicized quantities are dimensional)

\(t\), \(W=1\), \(L\) :

thickness, width and length normalized by the width

\(\nu\) :

Poisson ratio

\(\mathrm{E}, \mathrm {Y},\mathrm {B}=\frac{\mathrm {Y}\mathrm {t}^{2}}{12(1-\nu^{2})}\) :

Young, stretching and bending modulus

\(Y=1\), \(B=\frac{t^{2}}{12(1-\nu^{2})}\) :

stretching and bending modulus, normalized by the stretching modulus

\(T=\mathrm {T}/\mathrm {Y}\) :

tensile strain (tensile load normalized by stretching modulus)

\(\theta\), \(\eta=\theta/L\) :

twist angle and normalized twist

\((\hat{\boldsymbol {x}},\hat{\boldsymbol {y}},\hat{\boldsymbol {z}})\) :

Cartesian basis

\(s\), \(r\) :

material coordinates (longitudinal and transverse)

\(z(s,r)\) :

out of plane displacement (of the helicoid) in the small-slope approximation

\(\boldsymbol {X}(s,r)\) :

surface vector

\(\hat{\boldsymbol {n}}\) :

unit normal to the surface

\(\sigma^{\alpha \beta}\) :

stress tensor

\(\varepsilon_{\alpha \beta}\) :

strain tensor

\(g_{\alpha \beta}\) :

metric tensor

\(c_{\alpha \beta}\) :

curvature tensor

\(\mathcal{A}^{\alpha\beta\gamma\delta}\) :

elastic tensor

\(\partial_{\alpha}\), \(D_{\alpha}\) :

partial and covariant derivatives

\(H\), \(K\) :

mean and Gaussian curvatures

\(\zeta\) :

infinitesimal amplitude of the perturbation in linear stability analysis

\(z_{1}(s,r)\) :

normal component of an infinitesimal perturbation to the helicoidal shape

\(\eta_{\mathrm{lon}}\), \(\lambda_{\mathrm{lon}}\) :

longitudinal instability threshold and wavelength

\(\eta_{\mathrm{tr}}\), \(\lambda_{\mathrm{tr}}\) :

transverse instability threshold and wavelength

\(\alpha=\eta^{2}/T\) :

confinement parameter

\(\alpha_{\mathrm{lon}}\) :

threshold confinement for the longitudinal instability

\(r_{\mathrm{wr}}\) :

(half the) width of the longitudinally wrinkled zone

\(\Delta \alpha=\alpha-24\) :

distance to the threshold confinement

\(f(r)\) :

amplitude of the longitudinal wrinkles

\(U_{\mathrm{hel}}\), \(U_{\mathrm{FT}}\) :

elastic energies (per length) of the helicoid and the far from threshold longitudinally wrinkled state

\(U_{\mathrm{dom}}\), \(U_{\mathrm{sub}}\) :

dominant and subdominant (with respect to \(t\)) parts of \(U_{\mathrm{FT}}\)

\({\boldsymbol {X}_{\mathrm{cl}}}(s)\) :

ribbon centerline

\(\hat{t} = d\boldsymbol {X}_{\mathrm{cl}}(s)/ds\) :

tangent vector in the ribbon midplane

\(\hat{\boldsymbol {r}}(s)\) :

normal to the tangent vector

\(\hat{\boldsymbol{b}}(s)\) :

Frenet binormal to the curve \(\boldsymbol {X}_{\mathrm{cl}}(s)\)

\(\tau(s), \kappa(s)\) :

torsion and curvature of \(\boldsymbol {X}_{\mathrm{cl}}(s)\)

References

  1. Green, A.E.: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 154(882), 430 (1936)

    Article  MATH  Google Scholar 

  2. Green, A.E.: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 161(905), 197 (1937). http://www.jstor.org/stable/96910

    Article  MATH  Google Scholar 

  3. Chopin, J., Kudrolli, A.: Phys. Rev. Lett. 111(17), 174302 (2013). doi:10.1103/PhysRevLett.111.174302

    Article  Google Scholar 

  4. Mockensturm, E.M.: J. Appl. Mech. 68(4), 561 (2000). doi:10.1115/1.1357517

    Article  Google Scholar 

  5. Coman, C.D., Bassom, A.P.: Acta Mechanica 200(1–2), 59 (2008). doi:10.1007/s00707-007-0572-3

    Article  MATH  Google Scholar 

  6. Sadowsky, M.: Teil II. Verhandl. des 3. Intern. Kongr. f. Techn. Mechanik, 444–451 (1930)

    Google Scholar 

  7. Korte, A.P., Starostin, E.L., van der Heijden, G.H.M.: Proc. R. Soc. A, Math. Phys. Eng. Sci. 467(2125), 285 (2011). doi:10.1098/rspa.2010.0200

    Article  MATH  Google Scholar 

  8. Cerda, E., Mahadevan, L.: Phys. Rev. Lett. 90(7), 074302 (2003). doi:10.1103/PhysRevLett.90.074302

    Article  Google Scholar 

  9. Goriely, A., Nizette, M., Tabor, M.: J. Nonlinear Sci. 11(1), 3 (2001). doi:10.1007/s003320010009

    Article  MathSciNet  MATH  Google Scholar 

  10. Champneys, A.R., Thompson, J.M.T.: Proc. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 452(1954), 2467 (1996). doi:10.1098/rspa.1996.0132

    Article  MathSciNet  MATH  Google Scholar 

  11. van der Heijden, G., Thompson, J.: Phys. D: Nonlinear Phenom. 112(1–2), 201 (1998). Proceedings of the Workshop on Time-Reversal Symmetry in Dynamical Systems. doi:10.1016/S0167-2789(97)00211-X

    Article  Google Scholar 

  12. van der Heijden, G.H.M., Thompson, J.M.T.: Nonlinear Dyn. 21(1), 71 (2000). doi:10.1023/A:1008310425967

    Article  MATH  Google Scholar 

  13. Santangelo, C.: Geometric frustration in twisted strips. J. Club Condens. Matter Phys. (2014). http://www.condmatjournalclub.org/?p=2330

  14. Davidovitch, B., Schroll, R.D., Vella, D., Adda-Bedia, M., Cerda, E.A.: Proc. Natl. Acad. Sci. 108(45), 18227 (2011). doi:10.1073/pnas.1108553108

    Article  Google Scholar 

  15. King, H., Schroll, R.D., Davidovitch, B., Menon, N.: Proc. Natl. Acad. Sci. 109(25), 9716 (2012). doi:10.1073/pnas.1201201109

    Article  Google Scholar 

  16. Grason, G.M., Davidovitch, B.: Proc. Natl. Acad. Sci. 110(32), 12893 (2013). doi:10.1073/pnas.1301695110

    Article  Google Scholar 

  17. Landau, L.D., Lifchitz, E.M., Kosevitch, A.M., Pitaevski, L.P., Sykes, J.B., Reid, W.: Course of Theoretical Physics: Theory of Elasticity. Butterworth-Heinemann, Stoneham (1986)

    Google Scholar 

  18. Cranford, S., Buehler, M.J.: Model. Simul. Mater. Sci. Eng. 19(5), 054003 (2011). http://stacks.iop.org/0965-0393/19/i=5/a=054003

    Article  Google Scholar 

  19. Kit, O.O., Tallinen, T., Mahadevan, L., Timonen, J., Koskinen, P.: Phys. Rev. B 85(8), 085428 (2012). doi:10.1103/PhysRevB.85.085428

    Article  Google Scholar 

  20. Ogden, R.W.: Non-linear Elastic Deformations. Courier Dover Publications, New York (1997)

    Google Scholar 

  21. Efrati, E., Sharon, E., Kupferman, R.: J. Mech. Phys. Solids 57(4), 762 (2009). doi:10.1016/j.jmps.2008.12.004

    Article  MathSciNet  MATH  Google Scholar 

  22. Dias, M.A., Hanna, J.A., Santangelo, C.D.: Phys. Rev. E 84(3), 036603 (2011). doi:10.1103/PhysRevE.84.036603

    Article  Google Scholar 

  23. Hohlfeld, E., Davidovitch, B.: (2014, submitted)

    Google Scholar 

  24. Stein, M., Hedgepeth, J.M.: Analysis of Partly Wrinkled Membranes. National Aeronautics and Space Administration, Washington (1961)

    Google Scholar 

  25. Pipkin, A.C.: IMA J. Appl. Math. 36(1), 85 (1986). doi:10.1093/imamat/36.1.85

    Article  MathSciNet  MATH  Google Scholar 

  26. Mansfield, E.H.: The Bending and Stretching of Plates. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  27. Davidovitch, B., Schroll, R.D., Cerda, E.: Phys. Rev. E 85(6), 066115 (2012). doi:10.1103/PhysRevE.85.066115

    Article  Google Scholar 

  28. Bella, P., Kohn, R.V.: Commun. Pure Appl. Math. (2013)

    Google Scholar 

  29. Audoly, B., Pomeau, Y.: Elasticity and Geometry: From Hair Curls to the Non-linear Response of Shells. Oxford University Press, Oxford (2010)

    Google Scholar 

  30. Huang, J., Davidovitch, B., Santangelo, C.D., Russell, T.P., Menon, N.: Phys. Rev. Lett. 105(3), 038302 (2010). doi:10.1103/PhysRevLett.105.038302

    Article  Google Scholar 

  31. Vandeparre, H., Piñeirua, M., Brau, F., Roman, B., Bico, J., Gay, C., Bao, W., Lau, C.N., Reis, P.M., Damman, P.: Phys. Rev. Lett. 106, 224301 (2011). doi:10.1103/PhysRevLett.106.224301

    Article  Google Scholar 

  32. Schroll, R.D., Adda-Bedia, M., Cerda, E., Huang, J., Menon, N., Russell, T.P., Toga, K.B., Vella, D., Davidovitch, B.: Phys. Rev. Lett. 111(1), 014301 (2013). doi:10.1103/PhysRevLett.111.014301

    Article  Google Scholar 

  33. Pogorelov, A.: Extrinsic Geometry of Convex Surfaces

    Google Scholar 

  34. Witten, T.A.: Rev. Mod. Phys. 79, 643 (2007). doi:10.1103/RevModPhys.79.643

    Article  MATH  Google Scholar 

  35. Sharon, E., Roman, B., Marder, M., Shin, G.S., Swinney, H.L.: Nature 419(6907), 579 (2002). doi:10.1038/419579a

    Article  Google Scholar 

  36. Audoly, B., Boudaoud, A.: Phys. Rev. Lett. 91, 086105 (2003). doi:10.1103/PhysRevLett.91.086105

    Article  Google Scholar 

  37. Klein, Y., Venkataramani, S., Sharon, E.: Phys. Rev. Lett. 106, 118303 (2011). doi:10.1103/PhysRevLett.106.118303

    Article  Google Scholar 

  38. Gemmer, J.A., Venkataramani, S.C.: Nonlinearity 25(12), 3553 (2012). http://stacks.iop.org/0951-7715/25/i=12/a=3553

    Article  MathSciNet  MATH  Google Scholar 

  39. Giomi, L., Mahadevan, L.: Phys. Rev. Lett. 104, 238104 (2010). doi:10.1103/PhysRevLett.104.238104

    Article  Google Scholar 

  40. Kohn, R.V., Nguyen, H.M.: J. Nonlinear Sci. 23(3), 343 (2013). doi:10.1007/s00332-012-9154-1

    Article  MathSciNet  MATH  Google Scholar 

  41. Audoly, B., Boudaoud, A.: J. Mech. Phys. Solids 56(7), 2444 (2008). doi:10.1016/j.jmps.2008.03.001

    Article  MathSciNet  MATH  Google Scholar 

  42. Michell, J.: Messenger of Math. 11, 181 (1889–1890)

    Google Scholar 

  43. Goriely, A.: J. Elast. 84(3), 281 (2006). doi:10.1007/s10659-006-9055-3

    Article  MathSciNet  MATH  Google Scholar 

  44. Majumdar, A., Prior, C., Goriely, A.: J. Elast. 109(1), 75 (2012). doi:10.1007/s10659-012-9371-8

    Article  MathSciNet  MATH  Google Scholar 

  45. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  46. Ashwell, D.G.: Q. J. Mech. Appl. Math. 15(1), 91 (1962). doi:10.1093/qjmam/15.1.91

    Article  MathSciNet  MATH  Google Scholar 

  47. Nayyar, V., Ravi-Chandar, K., Huang, R.: Int. J. Solids Struct. 48(25–26), 3471 (2011). doi:10.1016/j.ijsolstr.2011.09.004

    Article  Google Scholar 

  48. Healey, T., Li, Q., Cheng, R.B.: J. Nonlinear Sci. 23(5), 777 (2013). doi:10.1007/s00332-013-9168-3

    Article  MathSciNet  MATH  Google Scholar 

  49. Kim, T.Y., Puntel, E., Fried, E.: Int. J. Solids Struct. 49(5), 771 (2012). doi:10.1016/j.ijsolstr.2011.11.018

    Article  Google Scholar 

  50. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Science 321(5887), 385 (2008)

    Article  Google Scholar 

  51. Novoselov, K.S., Fal[prime]ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: Nature 490(7419), 192 (2012). doi:10.1038/nature11458

    Article  Google Scholar 

  52. Mahadevan, L., Vaziri, A., Das, M.: Europhys. Lett. 77(4), 40003 (2007). http://stacks.iop.org/0295-5075/77/i=4/a=40003

    Article  Google Scholar 

  53. Schroll, R.D., Katifori, E., Davidovitch, B.: Phys. Rev. Lett. 106, 074301 (2011). doi:10.1103/PhysRevLett.106.074301

    Article  Google Scholar 

  54. Klein, Y., Efrati, E., Sharon, E.: Science 315(5815), 1116 (2007). doi:10.1126/science.1135994

    Article  MathSciNet  MATH  Google Scholar 

  55. Kim, J., Hanna, J.A., Byun, M., Santangelo, C.D., Hayward, R.C.: Science 335(6073), 1201 (2012). doi:10.1126/science.1215309

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benny Davidovitch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chopin, J., Démery, V., Davidovitch, B. (2016). Roadmap to the Morphological Instabilities of a Stretched Twisted Ribbon. In: Fosdick, R., Fried, E. (eds) The Mechanics of Ribbons and Möbius Bands. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7300-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7300-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7299-0

  • Online ISBN: 978-94-017-7300-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics