Skip to main content

Advertisement

Log in

Cratering response during droplet impacts on granular beds

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

This experimental work focuses on the cratering response of granular layers induced by liquid droplet impacts. A droplet impact results in severe granular layer deformation, crater formation and deposits in the vicinity of the impact center. High-precision three-dimensional imaging of the granular layer surface revealed important characteristics of liquid impacts on granular matter, such as singular asymmetric deformations of the layer. Our analysis also demonstrated that the impact energy and the granular packing, and its inherent compressibility, are not the unique parameters controlling the bed response, for which granular fraction heterogeneities may induce strong variations. Such heterogeneous conditions primarily influence the magnitude but not the dynamics of liquid impacts on granular layers. Finally, a general equation can be used to relate the enery released during cratering to both the impact energy and the compressibility of the granular matter. However, our results do not support any transition triggered by the compaction-dilation regime. Hence, higly detailed numerical simulations could provide considerable insights regarding the remaining questions related to heterogeneous packing conditions and its influence over the bulk compressibility and the compaction-dilation phase transition.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Goldman, Phys. Rev. E 77, 021308 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  2. S.P. Pudasaini, K. Hutter, Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches (Springer, 2007)

  3. K. Nordstrom, E. Lim, M. Harrington, W. Losert, Phys. Rev. Lett. 112, 228002 (2014)

    Article  ADS  Google Scholar 

  4. A. Clark, A. Petersen, P. Behringer, Phys. Rev. E 89, 012201 (2014)

    Article  ADS  Google Scholar 

  5. S. Deboeuf, P. Gondret, M. Rabaud, Phys. Rev. E 79, 041306 (2009)

    Article  ADS  Google Scholar 

  6. J. Marston, S. Thoroddsen, Powder Technol. 274, 284 (2015)

    Article  Google Scholar 

  7. A. Clark, P. Behringer, EPL 101, 64001 (2013)

    Article  ADS  Google Scholar 

  8. A. Clark, L. Kondic, P. Behringer, Phys. Rev. Lett. 109, 238302 (2012)

    Article  ADS  Google Scholar 

  9. A. Seguin, Y. Bertho, P. Gondret, Phys. Rev. E 78, 010301(R) (2008)

    Article  ADS  Google Scholar 

  10. P. Umbanhowar, D. Goldman, Phys. Rev. E 82, 010301(R) (2010)

    Article  ADS  Google Scholar 

  11. S.J. de Vet, J.R. de Bruyn, Phys. Rev. E 76, 041306 (2007)

    Article  ADS  Google Scholar 

  12. R. de Jong, S.-C. Zhao, D. van der Meer, Phys. Rev. E 95, 042901 (2017)

    Article  ADS  Google Scholar 

  13. A. Walsh, K. Holloway, P. Habdas, J. de Bruyn, Phys. Rev. Lett. 91, 104301 (2006)

    Article  ADS  Google Scholar 

  14. M. Ambroso, R. Kamien, D. Durian, Phys. Rev. E 72, 041305 (2005)

    Article  ADS  Google Scholar 

  15. R. Zhao, Q. Zhang, H. Tjugito, X. Cheng, Proc. Nat. Acad. Sci. U.S.A. 112, 342 (2015)

    Article  ADS  Google Scholar 

  16. E. Nefzaoui, O. Skurtys, Exp. Therm. Fluid Sci. 41, 43 (2012)

    Article  Google Scholar 

  17. G. Delon, S. Terwagne, N. Dorbolo, N. Vandewalle, H. Caps, Phys. Rev. E 84, 046320 (2011)

    Article  ADS  Google Scholar 

  18. H. Katsuragi, Phys. Rev. Lett. 104, 218001 (2010)

    Article  ADS  Google Scholar 

  19. H. Katsuragi, J. Fluid Mech. 675, 552 (2011)

    Article  ADS  Google Scholar 

  20. E. Long, G. Hargrave, J. Cooper, B. Kitchener, A. Parsons, C. Hewett, J. Wainwright, Phys. Rev. E 89, 032201 (2014)

    Article  ADS  Google Scholar 

  21. S. Ahn, S.H. Doerr, P. Douglas, R. Bryant, C. Hamlett, G. McHale, M.I. Newton, N.J. Shirtcliffe, Earth Surf. Process. Landforms 38, 1225 (2013)

    Article  ADS  Google Scholar 

  22. R. Brodowski, Catena 105, 52 (2013)

    Article  Google Scholar 

  23. D. Furbish, P. Haff, W. Dietrich, A. Heimsath, J. Geophys. Res. 114, F00A05 (2009)

    ADS  Google Scholar 

  24. D. Furbish, K. Hamner, M. Schmeeckle, M. Borosund, S. Mudd, J. Geophys. Res. 112, F01001 (2007)

    Article  ADS  Google Scholar 

  25. R.M. Nedderman, Statics and Kinematics of Granular Materials (Cambridge University Press, 1992)

  26. J. Marston, S. Thoroddsen, W. Ng, R. Tan, Powder Technol. 203, 223 (2010)

    Article  Google Scholar 

  27. K. Hapgood, J. Litster, S. Biggs, T. Howes, J. Colloid Interface Sci. 253, 353 (2002)

    Article  ADS  Google Scholar 

  28. H. Ghadiri, Earth Surf. Process. Landforms 29, 77 (2004)

    Article  ADS  Google Scholar 

  29. H. Ghadiri, D. Payne, Raindrop impact and soil splashs, in Soil Physical Properties and Crop Production in the Tropics (John Wiley and Sons, 1979)

  30. J.R. Royer, B. Conyers, E.I. Corwin, P.J. Eng, H.M. Jaeger, Europhys. Lett. 93, 280008 (2011)

    Article  Google Scholar 

  31. J.R. Royer, E.I. Corwin, P.J. Eng, H.M. Jaeger, Phys. Rev. Lett. 99, 038003 (2007)

    Article  ADS  Google Scholar 

  32. J. Zhao, R. de Jong, D. van der Meer, Soft Matter 11, 6562 (2015)

    Article  ADS  Google Scholar 

  33. J. Marston, E. Li, S. Thoroddsen, J. Fluid Mech. 704, 5 (2012)

    Article  ADS  Google Scholar 

  34. J. Cooper, J. Wainwright, A. Parsons, Y. Onda, T. Fukuwara, E. Obana, B. Kitchener, E. Long, J. Geophys. Res. 117, F04027 (2012)

    ADS  Google Scholar 

  35. T. Dunne, D.V. Malmon, S.M. Mudd, J. Geophys. Res. 115, F01001 (2010)

    Article  ADS  Google Scholar 

  36. Kirsten Foot, R.P.C. Morgan, Earth Surf. Process. Landforms 30, 1509 (2005)

    Article  ADS  Google Scholar 

  37. B.F. Edwards, J.W. Wilder, E.E. Scime, Eur. J. Phys. 22, 113 (2001)

    Article  Google Scholar 

  38. KONICA, Instruction manual (hardware), 2004

  39. E. Villermaux, B. Bossa, Nat. Phys. 5, 697 (2009)

    Article  Google Scholar 

  40. Louis Dufour, Ciel Terre 77, 113 (1961)

    ADS  Google Scholar 

  41. J.S. Marshall, W Mck. Palmer, J. Meteorol. 5, 165 (1948)

    Article  Google Scholar 

  42. B. Andreotti, Y. Forterre, O. Pouliquen, Granular Media: Between Fluid and Solid (Cambridge University Press, 2013)

  43. G.V. Middleton, P.R. Wilcock, Mechanics in the Earth and Environmental Sciences (Cambridge University Press, 1994)

  44. S.P.D. Birch, M. Manga, B. Delbridge, M. Chamberlain, Phys. Rev. E 90, 032208 (2014)

    Article  ADS  Google Scholar 

  45. R.S. Anderson, S.P. Anderson, Geomorphology: The Mechanics and Chemistry of Landscapes (Cambridge University Press, 2010)

  46. G.B. Foote, P.S. Du Toit, J. Appl. Meteorol. 8, 249 (1969)

    Article  ADS  Google Scholar 

  47. B.J. Mason, The Physics of Clouds (Oxford University Press, 1971)

  48. D. Carrea, A. Abellan, M.-H. Derron, N. Gauvin, M. Jaboyedoff, Using 3d surface datasets to understand landslide evolution: From analogue models to real case study, in Landslides and Engineered Slopes: Protecting Society through Improved Understanding edited by E. Eberhardt, C. Froese, K. Turner, S. Leroueil (CRC Press, 2012) pp. 575--579.

  49. J.-F. Metayer, D.J. Suntrup, C. Radin, H. Swinney, M. Schröter, Europhys. Lett. 93, 64003 (2011)

    Article  ADS  Google Scholar 

  50. N. Gravish, P. Umbanhowar, D. Goldman, Phys. Rev. Lett. 105, 128301 (2010)

    Article  ADS  Google Scholar 

  51. M. Schroter, S. Nagle, C. Radin, H. Swinney, EPL 78, 44004 (2007)

    Article  ADS  Google Scholar 

  52. P. Thompson, G. Grest, Phys. Rev. Lett. 67, 1751 (1991)

    Article  ADS  Google Scholar 

  53. Q. Zhang, M. Gao, R. Zhao, X. Cheng, Phys. Rev. E 92, 042205 (2015)

    Article  ADS  Google Scholar 

  54. J. Heyman, R. Delannay, H. Tabuteau, A. Valance, J. Fluid Mech. 830, 553 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  55. T. Sabuwala, C. Butcher, G. Gioia, P. Chakraborty, Phys. Rev. Lett. 120, 264501 (2018)

    Article  ADS  Google Scholar 

  56. J. Amato, R. Williams, Am. J. Phys. 66, 141 (1998)

    Article  ADS  Google Scholar 

  57. H. Katsuragi, D. Durian, Nat. Phys. 3, 420 (2007)

    Article  Google Scholar 

  58. J.S. Uehara, M. Ambroso, R.P. Ojha, D. Durian, Phys. Rev. Lett. 90, 194301 (2003)

    Article  ADS  Google Scholar 

  59. R.S. Farr, R.D. Groot, J. Chem. Phys. 131, 3276799 (2009)

    Article  Google Scholar 

  60. S. Torquato, T.M. Truskett, P.G. Debenedetti, Phys. Rev. Lett. 84, 2064 (2000)

    Article  ADS  Google Scholar 

  61. W. Jin, Y. Jiao, L. Liu, Y. Yuan, S. Li, Phys. Rev. E 95, 033003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  62. A. Donev, F.H. Stillinger, P.M. Chaikin, S. Torquato, Phys. Rev. Lett. 92, 255506 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Wyser.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wyser, E., Carrea, D., Jaboyedoff, M. et al. Cratering response during droplet impacts on granular beds. Eur. Phys. J. E 42, 111 (2019). https://doi.org/10.1140/epje/i2019-11877-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11877-8

Keywords

Navigation