Skip to main content
Log in

IGA-SPH: coupling isogeometric analysis with smoothed particle hydrodynamics for air-blast–structure interaction

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

We introduce a novel immersed-like numerical framework that combines isogeometric analysis with smoothed particle hydrodynamics for simulating air-blast–structure interaction. The solid domain is represented by a Lagrangian point cloud, which is immersed into a background Eulerian fluid domain. The smoothed particle hydrodynamics framework is employed to solve the equations of motion of the solid point cloud, whereas isogeometric analysis is used for the fluid mechanics equations on the background domain. The coupling strategy relies on a penalty-based volumetric coupling scheme that penalizes the velocity difference between the two domains, and involves a minimal amount of modification to existing codes, resulting in a straightforward implementation. The immersed nature of the proposed approach, combined with volumetric coupling, eliminates the need for explicit tracking of fluid–structure interfaces and imposes no limitations on solid domain motion and topology. Ample mathematical details are provided, and the proposed method is verified and validated against established numerical tools and experimental studies. The results affirm the method’s accuracy, robustness, and ease with which it seamlessly integrates two distinct computational techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Hughes TJR (2012) The finite element method: linear static and dynamic finite element analysis. Courier Corporation, New York

    Google Scholar 

  2. Sod GA (1978) A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J Comput Phys 27(1):1–31

    Article  MathSciNet  Google Scholar 

  3. Eymard R, Gallouët T, Herbin R (2000) Finite volume methods. Handb Numer Anal 7:713–1018

    MathSciNet  Google Scholar 

  4. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195

    Article  MathSciNet  Google Scholar 

  5. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389

    Article  Google Scholar 

  6. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024

    Article  Google Scholar 

  7. Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118(1–2):179–196

    Article  MathSciNet  Google Scholar 

  8. De Vaucorbeil A, Nguyen VP, Sinaie S, Wu JY (2020) Material point method after 25 years: theory, implementation, and applications. Adv Appl Mech 53:185–398

    Article  Google Scholar 

  9. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8–9):1081–1106

    Article  MathSciNet  Google Scholar 

  10. Liu WK, Chen Y, Jun S, Chen JS, Belytschko T, Pan C, Uras RA, Chang CT (1996) Overview and applications of the reproducing kernel particle methods. Arch Comput Methods Eng 3:3–80

    Article  MathSciNet  Google Scholar 

  11. Chen J-S, Pan C, Cheng-Tang W, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139(1–4):195–227

    Article  MathSciNet  Google Scholar 

  12. Tavarez FA, Plesha ME (2007) Discrete element method for modelling solid and particulate materials. Int J Numer Methods Eng 70(4):379–404

    Article  Google Scholar 

  13. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17–18):1526–1535

    Article  Google Scholar 

  14. Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44:73–168

    Article  Google Scholar 

  15. Bazilevs Y, Moutsanidis G, Bueno J, Kamran K, Kamensky D, Hillman MC, Gomez H, Chen JS (2017) A new formulation for air-blast fluid–structure interaction using an immersed approach: part II-coupling of IGA and meshfree discretizations. Comput Mech 60(1):101–116

    Article  MathSciNet  Google Scholar 

  16. Moutsanidis G, Kamensky D, Chen JS, Bazilevs Y (2018) Hyperbolic phase field modeling of brittle fracture. Part II-immersed IGA-RKPM coupling for air-blast-structure interaction. J. Mech. Phys. Solids 121:114–132

    Article  MathSciNet  Google Scholar 

  17. Munjiza AA (2004) The combined finite-discrete element method. Wiley, London

    Book  Google Scholar 

  18. Behzadinasab M, Hillman M, Bazilevs Y (2021) IGA-PD penalty-based coupling for immersed air-blast fluid–structure interaction: a simple and effective solution for fracture and fragmentation. J Mech 37:680–692

    Article  Google Scholar 

  19. Behzadinasab M, Moutsanidis G, Trask N, Foster JT, Bazilevs Y (2021) Coupling of IGA and peridynamics for air-blast fluid–structure interaction using an immersed approach. Forces Mech 4:100045

    Article  Google Scholar 

  20. Shende S, Behzadinasab M, Moutsanidis G, Bazilevs Y (2022) Simulating air blast on concrete structures using the volumetric penalty coupling of isogeometric analysis and peridynamics. Math Models Methods Appl Sci 32:2477–2496

    Article  MathSciNet  Google Scholar 

  21. Yang Q, Jones V, McCue L (2012) Free-surface flow interactions with deformable structures using an SPH-FEM model. Ocean Eng 55:136–147

    Article  Google Scholar 

  22. Hu D, Ting L, Xiao Y, Han X, Gu Y (2014) Fluid–structure interaction analysis by coupled FE-SPH model based on a novel searching algorithm. Comput Methods Appl Mech Eng 276:266–286

    Article  MathSciNet  Google Scholar 

  23. Long T, Dean H, Wan D, Zhuang C, Yang G (2017) An arbitrary boundary with ghost particles incorporated in coupled FEM-SPH model for FSI problems. J Comput Phys 350:166–183

    Article  MathSciNet  Google Scholar 

  24. Hasanpour A, Istrati D, Buckle I (2021) Coupled SPH-FEM modeling of tsunami-borne large debris flow and impact on coastal structures. J Mar Sci Eng 9(10):1068

    Article  Google Scholar 

  25. Lian YP, Zhang X, Zhou X, Ma ZT (2011) A FEMP method and its application in modeling dynamic response of reinforced concrete subjected to impact loading. Comput Methods Appl Mech Eng 200(17–20):1659–1670

    Article  Google Scholar 

  26. Chen ZP, Qiu XM, Zhang X, Lian YP (2015) Improved coupling of finite element method with material point method based on a particle-to-surface contact algorithm. Comput Methods Appl Mech Eng 293:1–19

    Article  MathSciNet  Google Scholar 

  27. Marrone S, Di Mascio A, Le Touzé D (2016) Coupling of smoothed particle hydrodynamics with finite volume method for free-surface flows. J Comput Phys 310:161–180

    Article  MathSciNet  Google Scholar 

  28. Mogan SRC, Chen D, Hartwig JW, Sahin I, Tafuni A (2018) Hydrodynamic analysis and optimization of the titan submarine via the SPH and finite—volume methods. Comput Fluids 174:271–282

    Article  MathSciNet  Google Scholar 

  29. Liu K, Liu Y, Li S, Chen H, Chen S, Arikawa T, Shi Y (2023) Coupling SPH with a mesh-based Eulerian approach for simulation of incompressible free-surface flows. Appl Ocean Res 138:103673

    Article  Google Scholar 

  30. Bazilevs Y, da Veiga LB, Cottrell JA, Hughes TJR, Sangalli G (2006) Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math Models Methods Appl Sci 16(07):1031–1090

    Article  MathSciNet  Google Scholar 

  31. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38(4):310–322

    Article  MathSciNet  Google Scholar 

  32. Akkerman I, Bazilevs Y, Kees CE, Farthing MW (2011) Isogeometric analysis of free-surface flow. J Comput Phys 230(11):4137–4152

    Article  MathSciNet  Google Scholar 

  33. Nguyen VP, Anitescu C, Bordas SPA, Rabczuk T (2015) Isogeometric analysis: an overview and computer implementation aspects. Math Comput Simul 117:89–116

    Article  MathSciNet  Google Scholar 

  34. Moutsanidis G, Long CC, Bazilevs Y (2020) IGA-MPM: the isogeometric material point method. Comput Methods Appl Mech Eng 372:113346

    Article  MathSciNet  Google Scholar 

  35. Li W, Moutsanidis G, Behzadinasab M, Hillman M, Bazilevs Y (2022) Reduced quadrature for finite element and isogeometric methods in nonlinear solids. Comput Methods Appl Mech Eng 399:115389

    Article  MathSciNet  Google Scholar 

  36. Alaydin MD, Behzadinasab M, Bazilevs Y (2022) Isogeometric analysis of multilayer composite shell structures: plasticity, damage, delamination and impact modeling. Int J Solids Struct 252:111782

    Article  Google Scholar 

  37. Bazilevs Y, Takizawa K, Wu MCH, Kuraishi T, Avsar R, Zhaojing X, Tezduyar TE (2021) Gas turbine computational flow and structure analysis with isogeometric discretization and a complex-geometry mesh generation method. Comput Mech 67:57–84

    Article  MathSciNet  Google Scholar 

  38. Bazilevs Y, Takizawa K, Tezduyar TE, Korobenko A, Kuraishi T, Otoguro Y (2023) Computational aerodynamics with isogeometric analysis. J Mech 39:24–39

    Article  Google Scholar 

  39. Farin GE (1995) NURBS curves and surfaces: from projective geometry to practical use. AK Peters Ltd, London

    Google Scholar 

  40. Piegl L, Tiller W (1996) The NURBS book. Springer, London

    Google Scholar 

  41. Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199(5–8):229–263

    Article  MathSciNet  Google Scholar 

  42. Johannessen KA, Kvamsdal T, Dokken T (2014) Isogeometric analysis using LR B-splines. Comput Methods Appl Mech Eng 269:471–514

    Article  MathSciNet  Google Scholar 

  43. Buffa A, Giannelli C (2016) Adaptive isogeometric methods with hierarchical splines: error estimator and convergence. Math Models Methods Appl Sci 26(01):1–25

    Article  MathSciNet  Google Scholar 

  44. Thomas DC, Engvall L, Schmidt SK, Tew K, Scott MA (2022) U-splines: splines over unstructured meshes. Comput Methods Appl Mech Eng 401:115515

    Article  MathSciNet  Google Scholar 

  45. Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys 191(2):448–475

    Article  Google Scholar 

  46. Vignjevic R, Reveles JR, Campbell J (2006) SPH in a total Lagrangian formalism. CMC Tech Sci Press 4(3):181

    MathSciNet  Google Scholar 

  47. Liu MB, Liu GR (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17(1):25–76

    Article  MathSciNet  Google Scholar 

  48. Zainali A, Tofighi N, Shadloo MS, Yildiz M (2013) Numerical investigation of Newtonian and non-Newtonian multiphase flows using ISPH method. Comput Methods Appl Mech Eng 254:99–113

    Article  MathSciNet  Google Scholar 

  49. Shadloo MS, Oger G, Le Touzé D (2016) Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges. Comput Fluids 136:11–34

    Article  MathSciNet  Google Scholar 

  50. Fourtakas G, Stansby PK, Rogers BD, Lind SJ, Yan S, Ma Q (2018) On the coupling of incompressible SPH with a finite element potential flow solver for nonlinear free-surface flows. Int J Offshore Polar Eng 28(03):248–254

    Article  Google Scholar 

  51. Lind SJ, Rogers BD, Stansby PK (2020) Review of smoothed particle hydrodynamics: towards converged Lagrangian flow modelling. Proc R Soc A 476(2241):20190801

    Article  MathSciNet  Google Scholar 

  52. Almasi F, Shadloo MS, Hadjadj A, Ozbulut M, Tofighi N, Yildiz M (2021) Numerical simulations of multi-phase electro-hydrodynamics flows using a simple incompressible smoothed particle hydrodynamics method. Comput Math Appl 81:772–785

    Article  MathSciNet  Google Scholar 

  53. Domínguez JM, Fourtakas G, Altomare C, Canelas RB, Tafuni A, García-Feal O, Martínez-Estévez I, Mokos A, Vacondio R, Crespo AJC et al (2022) DualSPHysics: from fluid dynamics to multiphysics problems. Comput Particle Mech 9(5):867–895

    Article  Google Scholar 

  54. Khayyer A, Shimizu Y, Lee CH, Gil A, Gotoh H, Bonet J (2023) An improved updated Lagrangian SPH method for structural modelling. Comput Particle Mech 2023:1–32

    Google Scholar 

  55. Khayyer A, Gotoh H, Shimizu Y, Gotoh T (2024) An improved Riemann SPH-Hamiltonian SPH coupled solver for hydroelastic fluid–structure interactions. Eng Anal Bound Elem 158:332–355

    Article  MathSciNet  Google Scholar 

  56. Cox MG (1972) The numerical evaluation of B-splines. IMA J Appl Math 10(2):134–149

    Article  MathSciNet  Google Scholar 

  57. Islam MRI, Peng C (2019) A total Lagrangian SPH method for modelling damage and failure in solids. Int J Mech Sci 157:498–511

    Article  Google Scholar 

  58. Rahimi MN, Moutsanidis G (2022) A smoothed particle hydrodynamics approach for phase field modeling of brittle fracture. Comput Methods Appl Mech Eng 398:115191

    Article  MathSciNet  Google Scholar 

  59. Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68(8):1703–1759

    Article  MathSciNet  Google Scholar 

  60. Bonet J, Lok TSL (1999) Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Comput Methods Appl Mech Eng 180(1–2):97–115

    Article  MathSciNet  Google Scholar 

  61. Hauke G, Hughes TJR (1998) A comparative study of different sets of variables for solving compressible and incompressible flows. Comput Methods Appl Mech Eng 153(1–2):1–44

    Article  MathSciNet  Google Scholar 

  62. Hauke G, Hughes TJR (1994) A unified approach to compressible and incompressible flows. Comput Methods Appl Mech Eng 113(3–4):389–395

    Article  MathSciNet  Google Scholar 

  63. Bazilevs Y, Kamran K, Moutsanidis G, Benson DJ, Onate E (2017) A new formulation for air-blast fluid–structure interaction using an immersed approach. Part I: basic methodology and FEM-based simulations. Comput Mech 60:83–100

    Article  MathSciNet  Google Scholar 

  64. Kamensky D, Moutsanidis G, Bazilevs Y (2018) Hyperbolic phase field modeling of brittle fracture: part I—theory and simulations. J Mech Phys Solids 121:81–98

    Article  MathSciNet  Google Scholar 

  65. Rahimi MN, Moutsanidis G (2022) Modeling dynamic brittle fracture in functionally graded materials using hyperbolic phase field and smoothed particle hydrodynamics. Comput Methods Appl Mech Eng 401:115642

    Article  MathSciNet  Google Scholar 

  66. Rahimi MN, Moutsanidis G (2023) An SPH-based FSI framework for phase-field modeling of brittle fracture under extreme hydrodynamic events. Eng Comput 2023:1–35

    Google Scholar 

  67. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32(1–3):199–259

    Article  MathSciNet  Google Scholar 

  68. Hughes TJR, Tezduyar TE (1984) Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput Methods Appl Mech Eng 45(1–3):217–284

    Article  MathSciNet  Google Scholar 

  69. Le Beau GJ, Ray SE, Aliabadi SK, Tezduyar TE (1993) SUPG finite element computation of compressible flows with the entropy and conservation variables formulations. Comput Methods Appl Mech Eng 104(3):397–422

    Article  Google Scholar 

  70. Hughes TJR, Mallet M, Akira M (1986) A new finite element formulation for computational fluid dynamics: II. Beyond SUPG. Comput Methods Appl Mech Eng 54(3):341–355

    Article  MathSciNet  Google Scholar 

  71. Hughes TJR, Mallet M (1986) A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems. Comput Methods Appl Mech Eng 58(3):329–336

    Article  MathSciNet  Google Scholar 

  72. Tezduyar TE, Senga M, Vicker D (2006) Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZ\(\beta\) shock-capturing. Comput Mech 38:469–481

    Article  Google Scholar 

  73. Fei X, Moutsanidis G, Kamensky D, Hsu M-C, Murugan M, Ghoshal A, Bazilevs Y (2017) Compressible flows on moving domains: stabilized methods, weakly enforced essential boundary conditions, sliding interfaces, and application to gas-turbine modeling. Comput Fluids 158:201–220

    Article  MathSciNet  Google Scholar 

  74. Rispoli F, Saavedra R, Corsini A, Tezduyar TE (2007) Computation of inviscid compressible flows with the V-SGS stabilization and YZ\(\beta\) shock-capturing. Int J Numer Methods Fluids 54(6–8):695–706

    Article  MathSciNet  Google Scholar 

  75. Monaghan JJ, Gingold RA (1983) Shock simulation by the particle method SPH. J Comput Phys 52(2):374–389

    Article  Google Scholar 

  76. Wang J, Zhou G, Hillman M, Madra A, Bazilevs Y, Jing D, Kangning S (2021) Consistent immersed volumetric Nitsche methods for composite analysis. Comput Methods Appl Mech Eng 385:114042

    Article  MathSciNet  Google Scholar 

  77. Nitsche J (1971) Über ein variationsprinzip zur lösung von dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind. In: Abhandlungen aus dem mathematischen Seminar der Universität Hamburg, vol 36. Springer, London, pp 9–15

  78. Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha\) method

  79. Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev Astron Astrophys 30(1):543–574

    Article  Google Scholar 

  80. Huang T-H, Chen J-S, Tupek MR, Beckwith FN, Fang HE (2022) A variational multiscale immersed meshfree method for fluid–structure interactive systems involving shock waves. Comput Methods Appl Mech Eng 389:114396

    Article  MathSciNet  Google Scholar 

  81. Grétarsson JT, Kwatra N, Fedkiw R (2011) Numerically stable fluid–structure interactions between compressible flow and solid structures. J Comput Phys 230(8):3062–3084

    Article  MathSciNet  Google Scholar 

  82. Giordano J, Jourdan G, Burtschell Y, Medale M, Zeitoun DE, Houas L (2005) Shock wave impacts on deforming panel, an application of fluid–structure interaction. J Shock Waves 14(1):103–110

    Article  Google Scholar 

  83. Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217–220:77–95

    Article  MathSciNet  Google Scholar 

  84. Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45–48):2765–2778

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Stony Brook Research Computing and Cyberinfrastructure, and the Institute for Advanced Computational Science at Stony Brook University for access to the high-performance SeaWulf computing system, which was made possible by a $1.4M National Science Foundation grant (#1531492).

Author information

Authors and Affiliations

Authors

Contributions

MN.R. developed the code, ran the analyses, visualized the results, and wrote the initial draft of the manuscript. G.M. conceptualized the work, developed the mathematical formulation, reviewed the initial draft, and edited and final version of the manuscript.

Corresponding author

Correspondence to Georgios Moutsanidis.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Omega correction for improved fracture surface in particle methods

Appendix: Omega correction for improved fracture surface in particle methods

In this appendix, we investigate the application and efficacy of the proposed omega correction [Eq. (45)] in refining fracture surface predictions within particle methods. The focus is on two pivotal experiments: dynamic crack branching and the Kalthoff–Winkler experiment. The case setups are adopted from [16, 83, 84]. For the dynamic crack branching scenario, a plate with a pre-existing crack is subjected to surface tension from the top and bottom, leading to crack propagation and subsequent branching, as illustrated in Fig. 18. The conventional TLSPH approach exhibits minor non-physical fracture irregularities and particle disturbance, as depicted in Fig. 19. The incorporation of the omega correction markedly enhances the fracture surface, yielding a cleaner and more accurate representation, especially when using an omega value of \(\omega _s > 10^{-3}\). In Fig. 20, the influence of the omega correction on strain and dissipated fracture energy over time is observed. The impact is found to be quite negligible, indicating the effectiveness of the omega correction in enhancing the fracture surface without imposing significant effects on the physics of the system. This holds particularly true for values of \(10^{-3}< \omega _s < 10^{-2}\). In the Kalthoff–Winkler experiment, a plate with a pre-existing crack is exposed to pure shear loading from the left lower part, inducing a mixed mode I–II fracture in a diagonal direction. Figure 21 compares the predicted fracture surfaces with and without the omega correction. In Fig. 22 we compare the predicted energies of the system to the ones found in literature [83]. The results underscore the efficiency of the omega correction in predicting a clean and realistic fracture surface without imposing significant changes on the physics of the problem.

Fig. 18
figure 18

Dynamic crack branching. Crack propagation

Fig. 19
figure 19

Dynamic crack branching. Effects of correction factor, \(\omega _s\), on the fracture surface. The deformation is magnified by a factor of 200 to show the crack opening

Fig. 20
figure 20

Dynamic crack branching. Time evolution of the strain (a) and dissipated fracture energy (b) of the system for different \(\omega _s\) values compared with literature [83]

Fig. 21
figure 21

Kalthoff–Winkler experiment. Effects of correction factor, \(\omega _s\), on the fracture surface. The deformation is magnified by a factor of 5 to show the crack opening

Fig. 22
figure 22

Kalthoff–Winkler experiment. Time evolution of the strain (a) and dissipated fracture energy (b) of the system for different \(\omega _s\) values compared with literature [83]

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, M.N., Moutsanidis, G. IGA-SPH: coupling isogeometric analysis with smoothed particle hydrodynamics for air-blast–structure interaction. Engineering with Computers (2024). https://doi.org/10.1007/s00366-024-01978-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00366-024-01978-0

Keywords

Navigation