1 Introduction

The lowest-lying singly charmed baryons include the anti-triplet and sextet states \(\mathbf{B}_c=(\Lambda _c^+,\Xi _c^0,\Xi _c^+)\) and \(\mathbf{B}'_c=(\Sigma _c^{(0,+,++)},\Xi _c^{'(0,+)}, \Omega _c^0)\), respectively. The \(\mathbf{B}_c\) and \(\Omega _c^0\) baryons predominantly decay weakly [1,2,3,4,5], whereas the \(\Sigma _c\) (\(\Xi '_c\)) decays are strong (electromagnetic) processes. There have been more accurate observations for the \(\mathbf{B}_c\) weak decays in the recent years, which have helped to improve the theoretical understanding of the decay processes [6,7,8,9,10,11,12,13,14]. With the lower production cross section of \(\sigma (e^+e^-\rightarrow \Omega _c^0X)\) [4], it is an uneasy task to measure \(\Omega _c^0\) decays. Consequently, most of the \(\Omega _c^0\) decays have not been reanalysized since 1990s [15,16,17,18,19,20,21,22,23], except for those in [24,25,26,27,28,29].

One still manages to measure more than ten \(\Omega _c^0\) decays, such as \(\Omega _c^0\rightarrow \Omega ^-\rho ^+\), \(\Xi ^0{\bar{K}}^{(*)0}\) and \(\Omega ^-\ell ^+ \nu _\ell \), but with the branching fractions relative to \({{\mathcal {B}}}(\Omega _c^0\rightarrow \Omega ^-\pi ^+)\) [5]. To extract the absolute branching fractions, the study of \(\Omega _c^0\rightarrow \Omega ^-\pi ^+\) is crucial. Fortunately, the \(\Omega _c^0\rightarrow \Omega ^-\pi ^+\) decay involves a simple topology, which benefits its theoretical exploration. In Fig. 1a, \(\Omega _c^0\rightarrow \Omega ^-\pi ^+\) is depicted to proceed through the \(\Omega _c^0\rightarrow \Omega ^-\) transition, while \(\pi ^+\) is produced from the external W-boson emission. Since it is a Cabibbo-allowed process with \(V_{cs}^* V_{ud}\simeq 1\), a larger branching fraction is promising for measurements. Furthermore, it can be seen that \(\Omega _c^0\rightarrow \Omega ^-\pi ^+\) has a similar configuration to those of \(\Omega _c^0\rightarrow \Omega ^-\rho ^+\) and \(\Omega _c^0\rightarrow \Omega ^-\ell ^+ \nu _\ell \), as drawn in Fig. 1, indicating that the three \(\Omega _c^0\) decays are all associated with the \(\Omega _c^0\rightarrow \Omega ^-\) transition. While \(\Omega \) is a decuplet baryon that consists of the totally symmetric identical quarks sss, behaving as a spin-3/2 particle, the form factors of the \(\Omega _c^0\rightarrow \Omega ^-\) transition can be more complicated, which hinders the calculation for the decays. As a result, a careful investigation that relates \(\Omega _c^0\rightarrow \Omega ^-\pi ^+,\Omega ^-\rho ^+\) and \(\Omega _c^0\rightarrow \Omega ^-\ell ^+ \nu _\ell \) has not been given yet, despite the fact that the topology associates them together.

Based on the quark models, it is possible to study the \(\Omega _c^0\) decays into \(\Omega ^-\) with the \(\Omega _c^0\rightarrow \Omega ^-\) transition form factors. However, the validity of theoretical approach needs to be tested, which depends on if the observations, given by

$$\begin{aligned} \frac{{{\mathcal {B}}}(\Omega _c^0\rightarrow \Omega ^-\rho ^+)}{{{\mathcal {B}}}(\Omega _c^0\rightarrow \Omega ^-\pi ^+)}= & {} 1.7\pm 0.3\,[4]\,(>1.3\,[5])\,, \nonumber \\ \frac{{{\mathcal {B}}}(\Omega _c^0\rightarrow \Omega ^-e^+\nu _e)}{{{\mathcal {B}}}(\Omega _c^0\rightarrow \Omega ^-\pi ^+)}= & {} 2.4\pm 1.2\,[5]\,, \end{aligned}$$
(1)

can be interpreted. Since the light-front quark model has been successfully applied to the heavy hadron decays [27, 30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46], in this report we will use it to study the \(\Omega _c^0\rightarrow \Omega ^-\) transition form factors. Accordingly, we will be enabled to calculate the absolute branching fractions of \(\Omega _c^0\rightarrow \Omega ^-\pi ^+(\rho ^+)\) and \(\Omega _c^0\rightarrow \Omega ^- \ell ^+ \nu _\ell \), and check if the two ratios in Eq. (1) can be well explained.

Fig. 1
figure 1

Feynman diagrams for a \(\Omega _c^0\rightarrow \Omega ^-\pi ^+(\rho ^+)\) and b \(\Omega _c^0\rightarrow \Omega ^-\ell ^+\nu _\ell \) with \(\ell ^+=e^+\) or \(\mu ^+\)

2 Theoretical framework

2.1 General formalism

To start with, we present the effective weak Hamiltonians \({{\mathcal {H}}}_{H,L}\) for the hadronic and semileptonic charmed baryon decays, respectively [47]:

$$\begin{aligned} {{\mathcal {H}}}_H= & {} \frac{G_F}{\sqrt{2}} V_{cs}^*V_{ud} [c_1({\bar{u}} d)({\bar{s}} c)+c_2({\bar{s}} d)({\bar{u}} c)]\,,\nonumber \\ {{\mathcal {H}}}_L= & {} \frac{G_F}{\sqrt{2}}V_{cs}^*({\bar{s}}c)({\bar{u}}_\nu v_\ell )\,, \end{aligned}$$
(2)

where \(G_F\) is the Fermi constant, \(V_{ij}\) the Cabibbo–Kobayashi–Maskawa (CKM) matrix elements, \(c_{1,2}\) the effective Wilson coefficients, \(({\bar{q}}_1 q_2)\equiv {\bar{q}}_1\gamma _\mu (1-\gamma _5)q_2\) and \(({\bar{u}}_\nu v_\ell )\equiv {\bar{u}}_\nu \gamma ^\mu (1-\gamma _5)v_\ell \). In terms of \({{\mathcal {H}}}_{H,L}\), we derive the amplitudes of \(\Omega _c^0\rightarrow \Omega ^- \pi ^+(\rho ^+)\) and \(\Omega _c^0\rightarrow \Omega ^- \ell ^+ \nu _\ell \) as [48, 49]

$$\begin{aligned} {{\mathcal {M}}}_h&\equiv {{\mathcal {M}}}(\Omega _c^0\rightarrow \Omega ^- h^+)\nonumber \\&=\frac{G_F}{\sqrt{2}}V^*_{cs}V_{ud}\,a_1 \langle \Omega ^-|({\bar{s}}c)|\Omega _c^0\rangle \langle h^+|({\bar{u}}d)|0 \rangle \,,\nonumber \\ {{\mathcal {M}}}_\ell&\equiv {{\mathcal {M}}}(\Omega _c^0\rightarrow \Omega ^- \ell ^+ \nu _\ell ) \nonumber \\&=\frac{G_F}{\sqrt{2}}V^*_{cs} \langle \Omega ^-|({\bar{s}}c)|\Omega _c^0 \rangle ({\bar{u}}_{\nu _\ell }v_\ell )\,, \end{aligned}$$
(3)

where \(h=(\pi ,\rho )\), \(\ell =(e,\mu )\), and \(a_1=c_1+c_2/N_c\) results from the factorization [50], with \(N_c\) the color number.

With \(\mathbf{B}'_c\,(\mathbf{B}')\) denoting the charmed sextet (decuplet) baryon, the matrix elements of the \(\mathbf{B}_c'\rightarrow \mathbf{B}'\) transition can be parameterized as [28, 45]

$$\begin{aligned} \langle T^\mu \rangle&\equiv \langle \mathbf{B}^{\prime }(P^{\,\prime },S',S_z^\prime )|{\bar{q}}\gamma ^\mu (1-\gamma _5)c|\mathbf{B}'_c(P,S,S_z)\rangle \nonumber \\&= \bar{u}_{\alpha }(P^{\,\prime },S_{z}^{\,\prime }) \left[ \frac{P^{\alpha }}{M}\left( \gamma ^{\mu }F^V_{1} +\frac{P^{\mu }}{M} F^V_{2} +\frac{P^{\,\prime \mu }}{M^{\prime }}F^V_{3}\right) \right. \nonumber \\&\quad \left. +g^{\alpha \mu }F^V_{4}\right] \gamma _{5}u(P,S_{z})\nonumber \\&\quad -\bar{u}_{\alpha }(P^{\,\prime },S_{z}^{\,\prime }) \left[ \frac{P^{\alpha }}{M}\left( \gamma ^{\mu }F^A_{1} +\frac{P^{\mu } }{M}F^A_{2} +\frac{P^{\,\prime \mu }}{M^{\prime }}F^A_{3}\right) \right. \nonumber \\&\quad \left. +g^{\alpha \mu }F^A_{4}\right] u(P,S_{z})\,, \end{aligned}$$
(4)

where \((M,M')\) and \((S,S')=(1/2,3/2)\) represent the masses and spins of \((\mathbf{B}'_c,\mathbf{B}')\), respectively, and \(F^{V,A}_i\) (\(i=1,2, \ldots ,4\)) the form factors to be extracted in the light-front quark model. The matrix elements of the meson productions are defined as [5]

$$\begin{aligned}&\langle \pi (p) |({\bar{u}}d)|0 \rangle = if_\pi q^\mu \,,\nonumber \\&\langle \rho (\lambda ) |({\bar{u}}d)|0 \rangle =m_\rho f_\rho \epsilon _\lambda ^{\mu *}\,, \end{aligned}$$
(5)

where \(f_{\pi (\rho )}\) is the decay constant, and \(\epsilon _\lambda ^\mu \) is the polarization four-vector with \(\lambda \) denoting the helicity state.

2.2 The light-front quark model

The baryon bound state \(\mathbf{B}'_{(c)}\) contains three quarks \(q_1\), \(q_2\) and \(q_3\), with the subscript c for \(q_1=c\). Moreover, \(q_2\) and \(q_3\) are combined as a diquark state \(q_{[2,3]}\), behaving as a scalar or axial-vector. Subsequently, the baryon bound state \(|\mathbf{B}'_{(c)}(P,S,S_z)\rangle \) in the light-front quark model can be written as [31]

$$\begin{aligned}&|\mathbf{B}'_{(c)}(P,S,S_z)\rangle = \int \{d^{3}p_{1}\} \{d^{3}p_{2}\}2(2\pi )^{3}\delta ^{3}(\tilde{P}-\tilde{p}_{1}-\tilde{p}_{2})\nonumber \\&\quad \times \sum _{\lambda _{1},\lambda _{2}}\Psi ^{SS_{z}} (\tilde{p}_{1},\tilde{p}_{2},\lambda _{1},\lambda _{2})|q_1(p_1,\lambda _{1})q_{[2,3]} (p_{2},\lambda _{2})\rangle \,, \end{aligned}$$
(6)

where \(\Psi ^{SS_{z}}\) is the momentum-space wave function, and \((p_i,\lambda _i)\) stand for momentum and helicity of the constituent (di)quark, with \(i=1,2\) for \(q_1\) and \(q_{[2,3]}\), respectively. The tilde notations represent that the quantities are in the light-front frame, and one defines \(P=(P^-,P^+,P_\bot )\) and \({\tilde{P}}=(P^+,P_\bot )\), with \(P^\pm =P^0\pm P^3\) and \(P_\bot =(P^1,P^2)\). Besides, \(\tilde{p}_i\) are given by

$$\begin{aligned} {\tilde{p}}_i=(p_i^+, p_{i\bot })~, \quad p_{i\bot }= (p_i^1, p_i^2)~, \quad p_i^- = {m_i^2+p_{i\bot }^2\over p_i^+},\nonumber \\ \end{aligned}$$
(7)

with

$$\begin{aligned}&m_1=m_{q_1}, \quad m_2=m_{q_1}+m_{q_2},\nonumber \\&p^+_1=(1-x) P^+, \quad p^+_2=x P^+,\nonumber \\&p_{1\bot }=(1-x) P_\bot -k_\bot , \quad p_{2\bot }=xP_\bot +k_\bot \,, \end{aligned}$$
(8)

where x and \(k_\perp \) are the light-front relative momentum variables with \(k_\perp \) from \(\vec {k}=(k_\perp ,k_z)\), ensuring that \(P^{+}=p^+_1+p^+_2\) and \(P_{\bot }=p_{1\bot }+p_{2\bot }\). According to \(e_i\equiv \sqrt{m^2_{i}+{\vec {k}}^2}\) and \(M_0\equiv e_1+e_2\) in the Melosh transformation [30], we obtain

$$\begin{aligned}&x=\frac{e_2-k_z}{e_1+e_2}\,,\quad 1-x=\frac{e_1+k_z}{e_1+e_2}\,,\quad k_z=\frac{xM_0}{2}-\frac{m^2_{2}+k^2_{\perp }}{2xM_0}\,,\nonumber \\&M_0^2={ m_{1}^2+k_\bot ^2\over 1-x}+{ m_{2}^2+k_\bot ^2\over x}\,. \end{aligned}$$
(9)

Consequently, \(\Psi ^{SS_{z}}\) can be given in the following representation [41,42,43,44,45]:

$$\begin{aligned}&\Psi ^{SS_{z}}(\tilde{p}_{1},\tilde{p}_{2},\lambda _{1},\lambda _{2})\nonumber \\&\quad = \frac{A^{(\prime )}}{\sqrt{2(p_{1}\cdot \bar{P}+m_{1}M_{0})}}\bar{u}(p_{1},\lambda _{1}) \Gamma _{S,A}^{(\alpha )} u(\bar{P},S_{z})\phi (x,k_{\perp })\,,\nonumber \\ \end{aligned}$$
(10)

with

$$\begin{aligned} A&=\sqrt{\frac{3(m_{1}M_{0}+p_{1}\cdot \bar{P})}{3m_{1}M_{0}+p_{1}\cdot \bar{P}+ 2(p_{1}\cdot p_{2})(p_{2}\cdot \bar{P})/m_{2}^{2}}}\,,\\ \Gamma _S&=1,\;\; \Gamma _{A}=-\frac{1}{\sqrt{3}}\gamma _{5} \epsilon \! \! /^{*}(p_{2},\lambda _{2})\,, \end{aligned}$$

and

$$\begin{aligned}&A'=\sqrt{\frac{3m_{2}^{2}M_{0}^{2}}{2m_{2}^{2}M_{0}^{2}+(p_{2}\cdot \bar{P})^{2}}}\,,\;\; \Gamma _{A}^{\alpha }=\epsilon ^{*\alpha }(p_{2},\lambda _{2})\,, \end{aligned}$$
(11)

where the vertex function \(\Gamma _{S(A)}\) is for the scalar (axial-vector) diquark in \(\mathbf{B}'_c\), and \(\Gamma _A^\alpha \) for the axial-vector diquark in \(\mathbf{B}'\). We have used the variable \({\bar{P}}\equiv p_1+p_2\) to describe the internal motions of the constituent quarks in the baryon [32], which leads to \(({\bar{P}}_\mu \gamma ^\mu -M_0)u(\bar{P},S_{z})=0\), different from \((P_\mu \gamma ^\mu -M)u(P,S_{z})=0\). For the momentum distribution, \(\phi (x,k_{\perp })\) is presented as the Gaussian-type wave function, given by

$$\begin{aligned} \phi (x,k_{\perp })=4\left( \frac{\pi }{\beta ^{2}}\right) ^{3/4}\sqrt{\frac{e_{1}e_{2}}{x(1-x)M_{0}}}\exp \left( \frac{-{\vec {k}}^{2}}{2\beta ^{2}}\right) \,, \end{aligned}$$
(12)

where \(\beta \) shapes the distribution.

Using \(|\mathbf{B}'_c(P,S,S_z)\rangle \) and \(|\mathbf{B}'(P,'S',S'_z)\rangle \) from Eq. (6) and their components in Eqs. (10), (11) and (12), we derive the matrix elements of the \(\mathbf{B}'_c\rightarrow \mathbf{B}'\) transition in Eq. (4) as

$$\begin{aligned}&\langle {\bar{T}}^\mu \rangle \equiv \langle \mathbf{B}^{\prime }(P^{\,\prime },S',S_z^\prime )|{\bar{q}}\gamma ^\mu (1-\gamma _5)c|\mathbf{B}'_c(P,S,S_z)\rangle \nonumber \\&\quad = \int \{d^{3}p_{2}\}\frac{\phi ^{\prime }(x^{\prime },k_{\perp }^{\prime })\phi (x,k_{\perp })}{2\sqrt{p_{1}^{+}p_{1}^{\prime +}(p_{1}\cdot \bar{P}+m_{1}M_{0})(p_{1}^{\prime }\cdot \bar{P}^{\,\prime } +m_{1}^{\prime }M_{0}^{\prime })}}\nonumber \\&\qquad \times \sum _{\lambda _{2}}\bar{u}_{\alpha }(\bar{P}^{\,\prime },S_{z}^{\,\prime }) \left[ {\bar{\Gamma }}^{\,\prime \alpha }_{A}(p \! \! /_{1}^{\prime }+m_{1}^{\prime }) \right. \nonumber \\&\qquad \times \left. \gamma ^{\mu }(1-\gamma _{5})({p \! \! /}_{1}+m_{1})\Gamma _{A}\right] u(\bar{P},S_{z})\,, \end{aligned}$$
(13)

with \(m_1=m_c\), \(m'_1=m_q\) and \({{\bar{\Gamma }}}=\gamma ^0 \Gamma ^\dagger \gamma ^0\). We define \(J_{5\,j}^{\mu }=\bar{u}(\Gamma _{5}^{\mu \beta })_{j}u_{\beta }\) and \({\bar{J}}_{5\,j}^{\mu }=\bar{u}({{\bar{\Gamma }}}_{5}^{\mu \beta })_{j}u_{\beta }\) with \(j=1,2,...,4\), where

$$\begin{aligned} (\Gamma _{5}^{\mu \beta })_j= & {} \{\gamma ^{\mu }P^{\beta },P^{\,\prime \mu }P^{\beta },P^{\mu }P^{\beta },g^{\mu \beta }\}\gamma _{5}\,,\nonumber \\ ({\bar{\Gamma }}_{5}^{\mu \beta })_j= & {} \{\gamma ^{\mu }\bar{P}^{\beta },\bar{P}^{\,\prime \mu }\bar{P}^{\beta },\bar{P}^{\mu }\bar{P}^{\beta },g^{\mu \beta }\}\gamma _{5}\,. \end{aligned}$$
(14)

Then, we multiply \(J_{5\,j}\) (\({\bar{J}}_{5\,j}\)) by \(\langle T\rangle \) (\(\langle {\bar{T}}\rangle \)) as \(F_{5\,j}\equiv J_{5\,j}\cdot \langle T\rangle \) and \({\bar{F}}_{5\,j}\equiv {\bar{J}}_{5\,j}\cdot \langle {\bar{T}}\rangle \) with \(\langle T\rangle \) and \(\langle {\bar{T}}\rangle \) in Eqs. (4) and (13), respectively, resulting in [45]

$$\begin{aligned}&F_{5\,j}=Tr\bigg \{ u_{\beta }\bar{u}_{\alpha } \left[ \frac{P^{\alpha }}{M}\left( \gamma ^{\mu }F^V_{1} +\frac{P^{\mu }}{M} F^V_{2} +\frac{P^{\,\prime \mu }}{M^{\prime }}F^V_{3}\right) \right. \nonumber \\&\quad \left. +g^{\alpha \mu }F^V_{4}\right] \gamma _{5}{\bar{u}}({\Gamma }_{5\mu }^{\beta })_j\bigg \}\,,\nonumber \\&{\bar{F}}_{5\,j}= \int \{d^{3}p_{2}\}\frac{\phi ^{\prime }(x^{\prime },k_{\perp }^{\prime })\phi (x,k_{\perp })}{2\sqrt{p_{1}^{+}p_{1}^{\prime +}(p_{1}\cdot \bar{P}+m_{1}M_{0})(p_{1}^{\prime }\cdot \bar{P}^{\,\prime } +m_{1}^{\prime }M_{0}^{\prime })}} \nonumber \\&\quad \times \sum _{\lambda _{2}} Tr\bigg \{u_{\beta }\bar{u}_{\alpha } \left[ {\bar{\Gamma }}^{\,\prime \alpha }_{A}(p \! \! /_{1}^{\prime }+m_{1}^{\prime }) \gamma ^{\mu }(p \! \! /_{1}+m_{1})\Gamma _{A}\right] u({\bar{\Gamma }}_{5\mu }^{\beta })_j\bigg \}\,.\nonumber \\ \end{aligned}$$
(15)

In the connection of \(F_{5\,j}={\bar{F}}_{5\,j}\), we construct four equations. By solving the four equations, the four form factors \(F^V_1\), \(F^V_2\), \(F^V_3\) and \(F^V_4\) can be extracted. The form factors \(F^A_i\) can be obtained in the same way.

2.3 Branching fractions in the helicity basis

One can present the amplitude of \(\Omega _c^0\rightarrow \Omega ^- h^+(\Omega ^- \ell ^+\nu _\ell )\) in the helicity basis of \(H_{\lambda _\Omega \lambda _{h(\ell )}}\) [28, 45], where \(\lambda _\Omega =\pm 3/2,\pm 1/2\) represent the helicity states of the \(\Omega ^-\) baryon, and \(\lambda _{h,\ell }\) those of \(h^+\) and \(\ell ^+\nu _\ell \). Substituting the matrix elements in Eqs. (3) with those in Eqs. (4) and (5), the amplitudes in the helicity basis now read \(\sqrt{2}{{\mathcal {M}}}_h= (i)\sum _{\lambda _\Omega ,\lambda _h}G_F V^*_{cs}V_{ud}\,a_1 m_h f_h H_{\lambda _\Omega \lambda _h}\) and \(\sqrt{2}{{\mathcal {M}}}_\ell =\sum _{\lambda _\Omega ,\lambda _\ell }G_F V^*_{cs} H_{\lambda _\Omega \lambda _\ell }\), where \(H_{\lambda _\Omega \lambda _f}=H^V_{\lambda _\Omega \lambda _f}-H^A_{\lambda _\Omega \lambda _f}\) with \(f=(h,\ell )\). Explicitly, \(H^{V(A)}_{\lambda _\Omega \lambda _f}\) is written as [28]

$$\begin{aligned} H^{V(A)}_{\lambda _\Omega \lambda _f} \equiv \langle \Omega ^-|{\bar{s}}\gamma _\mu (\gamma _5)c|\Omega _c^0\rangle \varepsilon ^\mu _f\,, \end{aligned}$$
(16)

with \(\varepsilon ^\mu _h=(q^\mu /\sqrt{q^2},\epsilon _\lambda ^{\mu *})\) for \(h=(\pi ,\rho )\). For the semi-leptonic decay, since the \(\ell ^+\nu _\ell \) system behaves as a scalar or vector, \(\varepsilon ^\mu _\ell =q^\mu /\sqrt{q^2}\) or \(\epsilon _\lambda ^{\mu \,*}\). The \(\pi \) meson only has a zero helicity state, denoted by \(\lambda _\pi ={\bar{0}}\). On the other hand, the three helicity states of \(\rho \) are denoted by \(\lambda _\rho =(1,0,-1)\). For the lepton pair, we assign \(\lambda _\ell =\lambda _\pi \) or \(\lambda _\rho \). Subsequently, we expand \(H^{V(A)}_{\lambda _\Omega \lambda _f}\) as

$$\begin{aligned}&H_{\frac{1}{2} {{\bar{0}}}}^{V(A)} =\sqrt{\frac{2}{3}\frac{Q^2_{\pm }}{q^2}} \left( \frac{Q^2_\mp }{2MM'}\right) (F_1^{V(A)} M_\pm \nonumber \\&\quad \mp F_2^{V(A)}{\bar{M}}_+ \mp F_3^{V(A)}{\bar{M}}'_- \mp F_4^{V(A)} M )\,, \end{aligned}$$
(17)

for \(\varepsilon ^\mu _f=q^\mu /\sqrt{q^2}\), where \(M_\pm = M\pm M'\), \(Q^2_\pm = M_\pm ^2 - q^2\), and \({\bar{M}}_{\pm }^{(\prime )}=(M_+M_-\pm q^2)/(2M^{(\prime )})\). We also obtain

$$\begin{aligned}&H_{\frac{3}{2}1}^{V(A)} = \mp \sqrt{Q^2_\mp } \, F_4^{V(A)}\,,\nonumber \\&H_{\frac{1}{2}1}^{V(A)}=-\sqrt{\frac{Q^2_\mp }{3}} \left[ F_1^{V(A)} \left( \frac{Q^2_\pm }{M M'}\right) -F_4^{V(A)}\right] \,,\nonumber \\&H_{\frac{1}{2}0}^{V(A)}= \sqrt{\frac{2}{3}\frac{Q^2_\mp }{q^2}} \left[ F_1^{V(A)} \left( \frac{Q^2_\pm M_\mp }{2MM'}\right) \right. \nonumber \\&\quad \left. \mp \left( F_2^{V(A)}+F_3^{V(A)}\frac{M}{M'}\right) \left( \frac{|{\vec {P}}'|^2}{M'}\right) \mp F_4^{V(A)}{\bar{M}}'_- \right] \,, \end{aligned}$$
(18)

for \(\varepsilon ^\mu _f=\epsilon _\lambda ^{\mu *}\), with \(|{\vec {P}}'|=\sqrt{Q^2_+ Q^2_-}/(2M)\). Note that the expansions in Eqs. (17) and (18) have satisfied \(\lambda _{\Omega _c}=\lambda _\Omega -\lambda _f\) for the helicity conservation, with \(\lambda _{\Omega _c}=\pm 1/2\). The branching fractions then read

$$\begin{aligned} {{\mathcal {B}}}_h&\equiv {{\mathcal {B}}}(\Omega ^0_c\rightarrow \Omega ^- h^+)\nonumber \\&= \frac{\tau _{\Omega _c}G_F^2|{\vec {P}}'|}{32\pi m_{\Omega _c}^2} |V_{cs}V_{ud}^*|^2\,a_1^2 m_h^2 f_h^2 H_h^2\,,\nonumber \\ {{\mathcal {B}}}_\ell&\equiv {{\mathcal {B}}}(\Omega _c^0\rightarrow \Omega ^- \ell ^+\nu _\ell ) \nonumber \\&=\frac{\tau _{\Omega _c}G_F^2|V_{cs}|^2}{192\pi ^3 m_{\Omega _c}^2} \int ^{(m_{\Omega _c}-m_\Omega )^2}_{m_\ell ^2}dq^2 \left( \frac{|{\vec {P}}'|(q^2-m_\ell ^2)^2}{q^2}\right) H_\ell ^2\,,\nonumber \\ \end{aligned}$$
(19)

where

$$\begin{aligned} H_\pi ^2= & {} \left| H_{\frac{1}{2}{{\bar{0}}}}\right| ^2+\left| H_{{-\frac{1}{2}}{{\bar{0}}}}\right| ^2\,,\nonumber \\ H_\rho ^2= & {} \left| H_{\frac{3}{2}1}\right| ^2+\left| H_{\frac{1}{2}1}\right| ^2+\left| H_{\frac{1}{2}0}\right| ^2 +\left| H_{-\frac{1}{2}0}\right| ^2+\left| H_{-\frac{1}{2}-1}\right| ^2\nonumber \\&+\left| H_{-\frac{3}{2}-1}\right| ^2\,,\nonumber \\ H_\ell ^2= & {} \left( 1+\frac{m_\ell ^2}{2q^2}\right) H_\rho ^2+\frac{3m_\ell ^2}{2q^2}H_\pi ^2\,, \end{aligned}$$
(20)

with \(\tau _{\Omega _c}\) the \(\Omega _c^0\) lifetime.

3 Numerical analysis

In the Wolfenstein parameterization, the CKM matrix elements are adopted as \(V_{cs}=V_{ud}=1-\lambda ^2/2\) with \(\lambda =0.22453\pm 0.00044\) [5]. We take the lifetime and mass of the \(\Omega _c^0\) baryon and the decay constants \((f_\pi ,f_\rho )=(132,216)\) MeV from the PDG [5]. With \((c_1,c_2)=(1.26,-0.51)\) at the \(m_c\) scale [47], we determine \(a_1\). In the generalized factorization, \(N_c\) is taken as an effective color number with \(N_c=(2,3,\infty )\) [28, 29, 46, 50], in order to estimate the non-factorizable effects. For the \(\Omega _c^+(css)\rightarrow \Omega ^-(sss)\) transition form factors, the theoretical inputs of the quark masses and parameter \(\beta \) in Eq. (15) are given by [34, 40]

$$\begin{aligned} m_{1}= & {} m_{c}=(1.35\pm 0.05)~\mathrm {GeV}\,,\quad m_{1}^{\prime }=m_{s}=0.38~\mathrm {GeV}\,,\quad \nonumber \\ m_{2}= & {} 2m_s=0.76~\mathrm {GeV}\,,\nonumber \\ \beta _c= & {} 0.60~\mathrm {GeV}\,, \quad \beta _s=0.46~\mathrm {GeV}\,, \end{aligned}$$
(21)

where \(\beta _{c(s)}\) is to determine \(\phi ^{(\prime )}(x^{(\prime )},k_{\perp }^{(\prime )})\) for \(\Omega _c^0\) \((\Omega ^-)\). We hence extract \(F^V_i\) and \(F^A_i\) in Table 1. For the momentum dependence, we have used the double-pole parameterization:

$$\begin{aligned} F(q^2)=\frac{F(0)}{1-a\left( q^2/m_F^2\right) +b\left( q^4/m_F^4\right) }\,, \end{aligned}$$
(22)

with \(m_F=1.86\) GeV.

Table 1 The \(\Omega ^0_c\rightarrow \Omega ^-\) transition form factors with F(0) at \(q^2=0\), where \(\delta \equiv \delta m_c/m_c=\pm 0.04\) from Eq. (21)

Using the theoretical inputs, we calculate the branching fractions, whose results are given in Table 2.

4 Discussions and conclusions

Table 2 Branching fractions of (non-)leptonic \(\Omega _c^0\) decays and their ratios, where \({{\mathcal {R}}}_{\rho (e)/\pi }\equiv {{\mathcal {B}}}_{\rho (e)}/{{\mathcal {B}}}_\pi \). The three numbers in the parenthesis correspond to \(N_c=(2,3,\infty )\), and the errors come from the uncertainties of the form factors in Table 1

In Table 2, we present \({{\mathcal {B}}}_{\pi }\) and \({{\mathcal {B}}}_{\rho }\) with \(N_c=(2,3,\infty )\). The errors come from the form factors in Table 1, of which the uncertainties are correlated with the charm quark mass. By comparison, \({{\mathcal {B}}}_\pi \) and \({{\mathcal {B}}}_\rho \) are compatible with the values in Ref. [28]; however, an order of magnitude smaller than those in Refs. [20, 22], whose values are obtained with the total decay widths \(\Gamma _{\pi (\rho )}=2.09 a_1^2(11.34 a_1^2)\times 10^{11}\) s\(^{-1}\) and \(\Gamma _{\pi (\rho )}=1.33 a_1^2(4.68 a_1^2)\times 10^{11}\) s\(^{-1}\), respectively. We also predict \({{\mathcal {B}}}_e=(5.4\pm 0.2)\times 10^{-3}\) as well as \({{\mathcal {B}}}_\mu \simeq {{\mathcal {B}}}_e\), which is much smaller than the value of \(127\times 10^{-3}\) in [24]. Only the ratios \({{\mathcal {R}}}_{\rho /\pi }\) and \({{\mathcal {R}}}_{e/\pi }\) have been actually observed so far. In our work, \({{\mathcal {R}}}_{\rho /\pi }=2.8\pm 0.4\) is able to alleviate the inconsistency between the previous value and the most recent observation. We obtain \({{\mathcal {R}}}_{e/\pi }=1.1\pm 0.2\) with \(N_c=2\) to be consistent with the data, which indicates that \(({{\mathcal {B}}}_\pi ,{{\mathcal {B}}}_\rho )=(5.1\pm 0.7,14.4\pm 0.4)\times 10^{-3}\) with \(N_c=2\) are more favorable.

The helicity amplitudes can be used to better understand how the form factors contribute to the branching fractions. With the identity \(H^{V(A)}_{-\lambda _\Omega -\lambda _f} = \mp H^{V(A)}_{\lambda _\Omega \lambda _f}\) for the \(\mathbf{B}'_c(J^P=1/2^+)\) to \(\mathbf{B}'(J^P=3/2^+)\) transition [28], \(H_\pi ^2\) in Eq. (20) can be rewritten as \(H_\pi ^2=2(|H_{\frac{1}{2} {{\bar{0}}}}^V|^2 +|H_{\frac{1}{2} {{\bar{0}}}}^A|^2)\). From the pre-factors in Eq. (17), we estimate the ratio of \(|H_{\frac{1}{2} {{\bar{0}}}}^V|^2/|H_{\frac{1}{2} {{\bar{0}}}}^A|^2\simeq 0.05\), which shows that \(H_{\frac{1}{2} {{\bar{0}}}}^A\) dominates \({{\mathcal {B}}}_\pi \), instead of \(H_{\frac{1}{2} {{\bar{0}}}}^V\). More specifically, it is the \(F_4^A\) term in \(H_{\frac{1}{2} {{\bar{0}}}}^A\) that gives the main contribution to the branching fraction. By contrast, the \(F_{1,3}^A\) terms in \(H_{\frac{1}{2} {{\bar{0}}}}^A\) largely cancel each other, which is caused by \(F_1^A M_- \simeq F_3^A {\bar{M}}'_-\) and a minus sign between \(F_1^A\) and \(F_3^A\) (see Table 1); besides, the \(F_2^A\) term with a small \(F_2^A(0)\) is ignorable.

Likewise, we obtain \(H_\rho ^2=2(|H_\rho ^V|^2+|H_\rho ^A|^2)\) for \({{\mathcal {B}}}_\rho \), where \(|H_\rho ^{V(A)}|^2= |H_{\frac{3}{2}1}^{V(A)}|^2+|H_{\frac{1}{2}1}^{V(A)}|^2+|H_{\frac{1}{2}0}^{V(A)}|^2\). We find that \(|H_\rho ^A|^2\) is ten times larger than \(|H_\rho ^V|^2\). Moreover, \(H_{\frac{1}{2}0}^A\) is similar to \(H_{\frac{1}{2}{\bar{0}}}^A\), where the \(F_{1,3}^A\) terms largely cancel each other, \(F_2^A\) is ignorable, and \(F_4^A\) gives the main contribution. While \(F_1^A\) and \(F_4^A\) in \(H_{\frac{1}{2}1}^A\) have a positive interference, giving 20% of \({{\mathcal {B}}}_\rho \), \(F_4^A\) in \(H_{\frac{3}{2}1}^A\) singly contributes 35%. In Eq. (20), the factor of \(m_\ell ^2/q^2\) with \(m_\ell \simeq 0\) should be much suppressed, such that \(H_\ell ^2\simeq H_\rho ^2\). Therefore, \({{\mathcal {B}}}_\ell \) receives the main contributions from the \(F_4^A\) terms in \(H_{\frac{1}{2}0}^A\), \(H_{\frac{1}{2}1}^A\) and \(H_{\frac{3}{2}1}^A\), which is similar to the analysis for \({{\mathcal {B}}}_\rho \).

In summary, we have studied the \(\Omega ^0_c\rightarrow \Omega ^-\pi ^+,\Omega ^-\rho ^+\) and \(\Omega ^0_c\rightarrow \Omega ^-\ell ^+\nu _\ell \) decays, which proceed through the \(\Omega _c^0\rightarrow \Omega ^-\) transition and the formation of the meson \(\pi ^+(\rho ^+)\) or lepton pair from the external W-boson emission. With the form factors of the \(\Omega _c^0\rightarrow \Omega ^-\) transition, calculated in the light-front quark model, we have predicted \({{\mathcal {B}}}(\Omega _c^0\rightarrow \Omega ^-\pi ^+,\Omega ^-\rho ^+)=(5.1\pm 0.7,14.4\pm 0.4)\times 10^{-3}\) and \({{\mathcal {B}}}(\Omega _c^0\rightarrow \Omega ^- e^+\nu _e)=(5.4\pm 0.2)\times 10^{-3}\). While the previous studies have given the \({{\mathcal {R}}}_{\rho /\pi }\) values deviating from the most recent observation, we have presented \({{\mathcal {R}}}_{\rho /\pi }=2.8\pm 0.4\) to alleviate the deviation. Moreover, we have obtained \({{\mathcal {R}}}_{e/\pi }=1.1\pm 0.2\), consistent with the current data.