Skip to main content
Log in

Determination of the \(^{232}Th(n,\gamma )\) cross section from 10 to 200 keV at the Back-n facility at CSNS

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The neutron capture cross section of \(^{232}Th\) has been measured with the time-of-flight technique in the energy range from 10 to 200 keV at the back-streaming white neutron beam-line (Back-n) of China Spallation Neutron Source (CSNS). The pulse height weighting technique (PHWT) was applied with four C\(_{6}\)D\(_{6}\) liquid scintillators to measure the prompt gamma-ray energy release following neutron capture. The measurement data, corrected with the PHWT, have been normalized to the saturated resonances at 21.8 eV. The background was determined by a lead sample measurement and detailed Monte Carlo simulations. The \(^{232}Th(n,\gamma )\) average cross sections have been determined relative to the \(^{197}Au(n,\gamma )\) reaction cross sections. The results are consistent with the evaluation values of CENDL-3.2 and JENDL-5. The total uncertainties, including the PHWT, normalization, background subtraction, corrections, and relative measurement, are in the range of 4.5–4.8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

The manuscript has data included as electronic supplementary material. The online version of this article contains supplementary material, which is available to authorized users.

References

  1. W. Gudowski, Nuclear waste management: status, prospects and hopes. Nucl. Phys. A 752, 623–632 (2005). https://doi.org/10.1016/j.nuclphysa.2005.02.133

    Article  ADS  Google Scholar 

  2. M. Salvatores, I. Slessarev, V. Berthou, Review and proposals about the role of accelerator driven systems nuclear power. Prog. Nucl. Energy 38(1–2), 167–178 (2001). https://doi.org/10.1016/S0149-1970(00)00101-3

    Article  Google Scholar 

  3. R. Reifarth, R. Haight, M. Heil, M.M. Fowler, F. Käppeler, G.G. Miller, R.S. Rundberg, J.L. Ullmann, J.B. Wilhelmy, Neutron capture measurements on 171Tm. Nucl. Phys. A 718, 478–480 (2003). https://doi.org/10.1016/S0375-9474(03)00862-5

    Article  ADS  Google Scholar 

  4. C.D. Bowman, E.D. Arthur, P.W. Lisowski, G.P. Lawrence, R.J. Jensen, J.L. Anderson, B. Blind, M. Cappiello, J.W. Davidson, T.R. England, L.N. Engel, R.C. Haight, H.G. Hughes, J.R. Ireland, R.A. Krakowski, R.J. LaBauve, B.C. Letellier, R.T. Perry, G.J. Russell, K.P. Staudhammer, G. Versamis, W.B. Wilson, Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source. Nucl. Instrum. Methods Phys. Res. Sect. A 320(1), 336–367 (1992). https://doi.org/10.1016/0168-9002(92)90795-6

    Article  ADS  Google Scholar 

  5. J. Ruimin, L. Minghai, Z. Yang, L. Guimin, Impact of photoneutrons on reactivity measurements for TMSR-SF1. Nucl. Sci. Tech. 28(6), 1–7 (2017). https://doi.org/10.1007/s41365-017-0234-7

    Article  Google Scholar 

  6. S. David, A. Billebaud, M.E. Brandan, R. Brissot, A. Giorni, D. Heuer, J.M. Loiseaux, O. Méplan, H. Nifenecker, J.B. Viano, J.P. Schapira, Fast subcritical hybrid reactors for energy production: evolution of physical parameters and induced radiotoxicities. Nucl. Instrum. Methods Phys. Res. Sect. A 443(2), 510–530 (2000). https://doi.org/10.1016/S0168-9002(99)01163-8

    Article  ADS  Google Scholar 

  7. U.E. Humphrey, M.U. Khandaker, Viability of thorium-based nuclear fuel cycle for the next generation nuclear reactor: issues and prospects. Renew. Sustain. Energy Rev. 97, 259–275 (2018). https://doi.org/10.1016/j.rser.2018.08.019

    Article  Google Scholar 

  8. B. Jiang, J. Han, J. Ren, W. Jiang, X. Wang, Z. Guo, J. Zhang, J. Hu, J. Chen, X. Cai, H. Wang, L. Liu, X. Li, X. Hu, Y. Zhang, Measurement of \(^{232}Th(n, \gamma )\) cross section at the CSNS back-n facility in the unresolved resonance region from 4 kev to 100 keV. Chin. Phys. B 31(6), 060101 (2022). https://doi.org/10.1088/1674-1056/ac5394

    Article  ADS  Google Scholar 

  9. G.E. Mitchell, J.D. Bowman, H.A. Weidenmüller, Parity violation in the compound nucleus. Rev. Mod. Phys. 71(1), 445 (1999). https://doi.org/10.1103/RevModPhys.71.445

    Article  ADS  Google Scholar 

  10. E.I. Sharapov, J.D. Bowman, B.E. Crawford, P.P.J. Delheij, C.M. Frankle, M. Iinuma, J.N. Knudson, L.Y. Lowie, J.E. Lynch, A. Masaike, Y. Matsuda, G.E. Mitchell, S.I. Penttilä, H. Postma, N.R. Roberson, S.J. Seestrom, S.L. Stephenson, Y.F. Yen, V.W. Yuan, Parity violation in \({}^{232}\rm Th \) neutron resonances above 250 eV. Phys. Rev. C 61, 025501 (2000). https://doi.org/10.1103/PhysRevC.61.025501

    Article  ADS  Google Scholar 

  11. B.E. Crawford, J.D. Bowman, P.P.J. Delheij, C.M. Frankle, M. Iinuma, J.N. Knudson, L.Y. Lowie, A. Masaike, Y. Matsuda, G.E. Mitchell, S.I. Penttilä, H. Postma, N.R. Roberson, S.J. Seestrom, E.I. Sharapov, S.L. Stephenson, Y.F. Yen, V.W. Yuan, Parity nonconservation in neutron resonances in \(^{238}\rm U \). Phys. Rev. C 58, 1225–1235 (1998). https://doi.org/10.1103/PhysRevC.58.1225

    Article  ADS  Google Scholar 

  12. N. Otuka, E. Dupont, V. Semkova, B. Pritychenko, A.I. Blokhin, M. Aikawa, S. Babykina, M. Bossant, G. Chen, S. Dunaeva, R.A. Forrest, T. Fukahori, N. Furutachi, S. Ganesan, Z. Ge, O.O. Gritzay, M. Herman, S. Hlavac, K. Kato, B. Lalremruata, Y.O. Lee, A. Makinaga, K. Matsumoto, M. Mikhaylyukova, G. Pikulina, V.G. Pronyaev, A. Saxena, O. Schwerer, S.P. Simakov, N. Soppera, R. Suzuki, S. Takács, X. Tao, S. Taova, F. Tárkányi, V.V. Varlamov, J. Wang, S.C. Yang, V. Zerkin, Y. Zhuang, Towards a more complete and accurate Experimental Nuclear Reaction Data Library (EXFOR): international collaboration between Nuclear Reaction Data Centres (NRDC). Nucl. Data Sheets 120, 272–276 (2014). https://doi.org/10.1016/j.nds.2014.07.065

    Article  ADS  Google Scholar 

  13. D.A. Brown, M.B. Chadwick, R. Capote, A.C. Kahler, A. Trkov, M.W. Herman, A.A. Sonzogni, Y. Danon, A.D. Carlson, M. Dunn, D.L. Smith, G.M. Hale, G. Arbanas, R. Arcilla, C.R. Bates, B. Beck, B. Becker, F. Brown, R.J. Casperson, J. Conlin, D.E. Cullen, M.A. Descalle, R. Firestone, T. Gaines, K.H. Guber, A.I. Hawari, J. Holmes, T.D. Johnson, T. Kawano, B.C. Kiedrowski, A.J. Koning, S. Kopecky, L. Leal, J.P. Lestone, C. Lubitz, J.I.M. Damián, C.M. Mattoon, E.A. McCutchan, S. Mughabghab, P. Navratil, D. Neudecker, G.P.A. Nobre, G. Noguere, M. Paris, M.T. Pigni, A.J. Plompen, B. Pritychenko, V.G. Pronyaev, D. Roubtsov, D. Rochman, P. Romano, P. Schillebeeckx, S. Simakov, M. Sin, I. Sirakov, B. Sleaford, V. Sobes, E.S. Soukhovitskii, I. Stetcu, P. Talou, I. Thompson, S.V.D. Marck, L. Welser-Sherrill, D. Wiarda, M. White, J.L. Wormald, R.Q. Wright, M. Zerkle, G. Zerovnik, Y. Zhu, ENDF/B-VIII0: the 8th major release of the Nuclear Reaction Data Library with CIELO-project cross sections, new standards and thermal scattering data. Nucl. Data Sheets 148, 1–142 (2018). https://doi.org/10.1016/j.nds.2018.02.001

    Article  ADS  Google Scholar 

  14. Z. Ge, R. Xu, H. Wu, Y. Zhang, G. Chen, Y. Jin, N. Shu, Y. Chen, X. Tao, Y. Tian, P. Liu, J. Qian, J. Wang, H. Zhang, L. Liu, X. Huang, CENDL-3.2: the new version of Chinese general purpose evaluated nuclear data library. EPJ Web Conf. 239, 09001 (2020). https://doi.org/10.1051/epjconf/202023909001. https://www.epj-conferences.org/articles/epjconf/abs/2020/15/epjconf_nd2019_09001/epjconf_nd2019_09001.html

  15. O. Iwamoto, N. Iwamoto, S. Kunieda, F. Minato, S. Nakayama, Y. Abe, K. Tsubakihara, S. Okumura, C. Ishizuka, T. Yoshida, S. Chiba, N. Otuka, J.C. Sublet, H. Iwamoto, K. Yamamoto, Y. Nagaya, K. Tada, C. Konno, N. Matsuda, K. Yokoyama, H. Taninaka, A. Oizumi, M. Fukushima, S. Okita, G. Chiba, S. Sato, M. Ohta, S. Kwon, Japanese evaluated Nuclear Data Library version 5: JENDL-5. J. Nucl. Sci. Technol. (2023). https://doi.org/10.1080/00223131.2022.2141903

    Article  Google Scholar 

  16. R.L. Macklin, R.R. Winters, Stable isotope capture cross sections from the oak ridge electron linear accelerator. Nucl. Sci. Eng. 78, 110–111 (1981). https://doi.org/10.13182/NSE81-A19622

    Article  ADS  Google Scholar 

  17. K. Kobayashi, Y. Fujita, N. Yamamuro, Measurement of neutron capture cross section of Thorium-232 from 1 keV to 408 keV. J. Nucl. Sci. Technol. (2012). https://doi.org/10.1080/18811248.1981.9733327

    Article  Google Scholar 

  18. G. Lobo, F. Corvi, P. Schillebeeckx, N. Janeva, A. Brusegan, P. Mutti, Measurement of the \(^{232}Th\) neutron capture cross section in the region 5 keV \(\sim \) 150 keV. J. Nucl. Sci. Technol. (2014). https://doi.org/10.1080/00223131.2002.10875132

    Article  Google Scholar 

  19. A. Borella, K. Volev, A. Brusegan, P. Schillebeeckx, F. Corvi, N. Koyumdjieva, N. Janeva, A. Lukyanov, Determination of the \(^{232}{Th}(n, \gamma )\) cross section from 4 to 140 kev at gelina. Nucl. Sci. Eng. 152(1), 1–14 (2006). https://doi.org/10.13182/NSE06-A2557

    Article  ADS  Google Scholar 

  20. G. Aerts, U. Abbondanno, H. Alvarez, F. Alvarez-Velarde, Andriamonje, neutron capture cross section of \(^{232}th\) measured at the n ToF facility at CERN in the unresolved resonance region up to 1 MeV. Phys. Rev. C 73, 054610 (2006). https://doi.org/10.1103/PhysRevC.73.054610

    Article  ADS  Google Scholar 

  21. K. Wisshak, F. Voss, F. Käppeler, Neutron capture cross section of \(^{232}\)Th. Nucl. Sci. Eng. (2017). https://doi.org/10.13182/NSE01-A2184

    Article  Google Scholar 

  22. M. Lindner, R.J. Nagle, J.H. Landrum, Neutron capture cross sections from 0.1 to 3 MeV by activation measurements. Nucl. Sci. Eng. (2017). https://doi.org/10.13182/NSE76-A26839

    Article  Google Scholar 

  23. D. Karamanis, M. Petit, S. Andriamonje, G. Barreau, M. Bercion, A. Billebaud, B. Blank, S. Czajkowski, R.D. Moral, J. Giovinazzo, V. Lacoste, C. Marchand, L. Perrot, M. Pravikoff, J.C. Thomas, Neutron radiative capture cross section of \(^{232}\)Th in the energy range from 0.06 to 2 MeV. Nucl. Sci. Eng. (2017). https://doi.org/10.13182/NSE01-A2238

    Article  Google Scholar 

  24. J. Ren, X. Ruan, W. Jiang, J. Bao, J. Wang, Q. Zhang, G. Luan, H. Huang, Y. Nie, Z. Ge, Q. An, H. Bai, Y. Bao, P. Cao, H. Chen, Q. Chen, Y. Chen, Y. Chen, Z. Chen, Z. Cui, R. Fan, C. Feng, K. Gao, M. Gu, C. Han, Z. Han, G. He, Y. He, Y. Hong, W. Huang, X. Huang, X. Ji, X. Ji, H. Jiang, Z. Jiang, H. Jing, L. Kang, M. Kang, B. Li, C. Li, J. Li, L. Li, Q. Li, X. Li, Y. Li, R. Liu, S. Liu, X. Liu, Q. Mu, C. Ning, B. Qi, Z. Ren, Y. Song, Z. Song, H. Sun, K. Sun, X. Sun, Z. Sun, Z. Tan, H. Tang, J. Tang, X. Tang, B. Tian, L. Wang, P. Wang, Q. Wang, T. Wang, Z. Wang, J. Wen, Z. Wen, Q. Wu, X. Wu, X. Wu, L. Xie, Y. Yang, H. Yi, L. Yu, T. Yu, Y. Yu, G. Zhang, L. Zhang, X. Zhang, Y. Zhang, Z. Zhang, Y. Zhao, L. Zhou, Z. Zhou, D. Zhu, K. Zhu, P. Zhu (T.C.B.n. Collaboration), Neutron capture cross section of \(^{169}\)Tm measured at the CSNS Back-n facility in the energy region from 30 to 300 keV*. Chin. Phys. C 46(4), 044002 (2022). https://doi.org/10.1088/1674-1137/ac4589

  25. J.Y. Tang, Q. An, J.B. Bai, J. Bao, Y. Bao, P. Cao, H.L. Chen, Q.P. Chen, Y.H. Chen, Z. Chen, Z.Q. Cui, R.R. Fan, C.Q. Feng, K.Q. Gao, X.L. Gao, M.H. Gu, C.C. Han, Z.J. Han, G.Z. He, Y.C. He, Y. Hong, Y.W. Hu, H.X. Huang, X.R. Huang, H.Y. Jiang, W. Jiang, Z.J. Jiang, H.T. Jing, L. Kang, B. Li, C. Li, J.W. Li, Q. Li, X. Li, Y. Li, J. Liu, R. Liu, S.B. Liu, X.Y. Liu, Z. Long, G.Y. Luan, C.J. Ning, M.C. Niu, B.B. Qi, J. Ren, Z.Z. Ren, X.C. Ruan, Z.H. Song, K. Sun, Z.J. Sun, Z.X. Tan, X.Y. Tang, B.B. Tian, L.J. Wang, P.C. Wang, Z.H. Wang, Z.W. Wen, X.G. Wu, X. Wu, L.K. Xie, X.Y. Yang, Y.W. Yang, H. Yi, L. Yu, T. Yu, Y.J. Yu, G.H. Zhang, L.H. Zhang, Q.W. Zhang, X.P. Zhang, Y.L. Zhang, Z.Y. Zhang, L.P. Zhou, Z.H. Zhou, K.J. Zhu, Back-n white neutron source at CSNS and its applications. Nucl. Sci. Tech. (2021). https://doi.org/10.1007/s41365-021-00846-6

    Article  Google Scholar 

  26. J. Han-Tao, T. Jing-Yu, Y. Zheng, Study on collimation and shielding of the back-streaming neutrons at the CSNS target. Chin. Phys. C 37(11), 117002 (2013). https://doi.org/10.1088/1674-1137/37/11/117002

    Article  ADS  Google Scholar 

  27. H.T. Jing, J.Y. Tang, H.Q. Tang, H.H. Xia, T.J. Liang, Z.Y. Zhou, Q.P. Zhong, X.C. Ruan, Studies of back-streaming white neutrons at CSNS. Nucl. Instrum. Methods Phys. Res. Sect. A 621(1), 91–96 (2010). https://doi.org/10.1016/j.nima.2010.06.097

    Article  ADS  Google Scholar 

  28. L. Zhu, J.R. Zhou, Y.G. Xia, L. Xiao, H. Luo, X.J. Zhou, W.Q. Yang, B.J. Guan, X.F. Jiang, Y.F. Wang, H. Xu, H.Y. Teng, L.X. Zeng, J.J. Li, L. Hu, K. Zhou, Y.X. Qiu, P.X. Shen, J. Xu, L.J. Liao, X.Z. Wang, G.A. Yang, H.C. Chen, J.P. Xu, Z.D. Li, S.L. Wang, J. Zhuang, Y.B. Zhao, J.R. Zhang, W. Yin, Z.J. Sun, Y.B. Chen, Large area \(^{3}\)He tube array detector with modular design for multi-physics instrument at CSNS. Nucl. Sci. Tech. (2023). https://doi.org/10.1007/s41365-022-01161-4

    Article  Google Scholar 

  29. X.F. Jiang, J.R. Zhou, H. Luo, L. Xiao, X.J. Zhou, H. Xu, Y.G. Xia, X.G. Wu, L. Zhu, W.Q. Yang, G.A. Yang, B.J. Guan, H.Y. Zhang, Y.B. Zhao, Z.J. Sun, Y.B. Chen, A large area \(^{3}\)He tube array detector with vacuum operation capacity for the SANS instrument at the CSNS. Nucl. Sci. Tech. (2022). https://doi.org/10.1007/s41365-022-01067-1

    Article  Google Scholar 

  30. Y. Chen, G. Luan, J. Bao, H. Jing, L. Zhang, Q. An, H. Bai, P. Cao, Q. Chen, P. Cheng, Z. Cui, R. Fan, C. Feng, M. Gu, F. Guo, C. Han, Z. Han, G. He, Y. He, Y. He, H. Huang, W. Huang, X. Huang, X. Ji, X. Ji, H. Jiang, W. Jiang, L. Kang, M. Kang, B. Li, L. Li, Q. Li, X. Li, Y. Li, R. Liu, S. Liu, X. Liu, Y. Ma, C. Ning, B. Qi, J. Ren, X. Ruan, Z. Song, H. Sun, X. Sun, Z. Sun, Z. Tan, H. Tang, J. Tang, P. Wang, Q. Wang, T. Wang, Y. Wang, Z. Wang, Z. Wang, J. Wen, Z. Wen, Q. Wu, X. Wu, X. Wu, L. Xie, Y. Yang, H. Yi, L. Yu, T. Yu, Y. Yu, G. Zhang, J. Zhang, L. Zhang, Q. Zhang, Q. Zhang, X. Zhang, Y. Zhang, Z. Zhang, Y. Zhao, L. Zhou, Z. Zhou, D. Zhu, K. Zhu, P. Zhu, Neutron energy spectrum measurement of the Back-n white neutron source at CSNS. Eur. Phys. J. A 55(7), 1–10 (2019). https://doi.org/10.1140/epja/i2019-12808-1

    Article  Google Scholar 

  31. Q. Li, G. Luan, J. Bao, J. Tang, H. Jing, R. Fan, H. Bai, W. Jiang, C. Ning, J. Ren, X. Ruan, Y. Chen, G. Zhang, H. Yi, Q. An, P. Cao, Q. Chen, P. Cheng, Z. Cui, C. Feng, M. Gu, F. Guo, C. Han, Z. Han, G. He, Y. He, Y. He, H. Huang, W. Huang, X. Huang, X. Ji, X. Ji, H. Jiang, L. Kang, M. Kang, B. Li, L. Li, X. Li, Y. Li, Y. Li, R. Liu, S. Liu, X. Liu, Y. Ma, B. Qi, Z. Song, H. Sun, X. Sun, Z. Sun, Z. Tan, H. Tang, P. Wang, Q. Wang, T. Wang, Y. Wang, Z. Wang, Z. Wang, J. Wen, Z. Wen, Q. Wu, X. Wu, X. Wu, L. Xie, Y. Yang, L. Yu, T. Yu, Y. Yu, J. Zhang, L. Zhang, L. Zhang, Q. Zhang, Q. Zhang, X. Zhang, Y. Zhang, Z. Zhang, Y. Zhao, L. Zhou, Z. Zhou, D. Zhu, K. Zhu, P. Zhu, The \(^{6}\)LiF-silicon detector array developed for real-time neutron monitoring at white neutron beam at CSNS. Nucl. Instrum. Methods Phys. Res. Sect. A 946, 162497 (2019). https://doi.org/10.1016/j.nima.2019.162497

    Article  Google Scholar 

  32. J. Ren, X. Ruan, J. Bao, G. Luan, H. Huang, Y. Nie, Introduction of a C\(_{6}\)D\(_{6}\) detector system on the Back-n of CSNS. EPJ Web Conf. 239, 17021 (2020). https://doi.org/10.1051/epjconf/202023917021

    Article  Google Scholar 

  33. X.R. Hu, G.T. Fan, W. Jiang, J. Ren, L.X. Liu, H.W. Wang, Y.D. Liu, X.X. Li, Y. Zhang, Z.R. Hao, P. Kuang, X.H. Wang, J.F. Hu, B. Jiang, D.X. Wang, S. Zhang, Z.D. An, Y.T. Wang, C.W. Ma, J.J. He, J. Su, L.Y. Zhang, Measurements of the \(^{197}\)Au(n,\(\gamma \)) cross section up to 100 keV at the CSNS Back-n facility. Nucl. Sci. Tech. (2021). https://doi.org/10.1007/s41365-021-00931-w

    Article  Google Scholar 

  34. X.R. Hu, L.X. Liu, W. Jiang, J. Ren, G.T. Fan, H.W. Wang, X.G. Cao, L.L. Song, Y.D. Liu, Y. Zhang, X.X. Li, Z.R. Hao, P. Kuang, X.H. Wang, J.F. Hu, B. Jiang, D.X. Wang, S. Zhang, Z.D. An, Y.T. Wang, C.W. Ma, J.J. He, J. Su, L.Y. Zhang, Y.X. Yang, S. Jin, K.J. Chen, New experimental measurement of \(^{nat}\)Se(n,\(\gamma \)) cross section between 1 eV to 1 keV at the CSNS Back-n facility. Chin. Phys. B 31(8), 080101 (2022). https://doi.org/10.1088/1674-1056/ac6ee2. https://ui.adsabs.harvard.edu/abs/2022ChPhB.31h0101H/abstract

  35. X.X. Li, L.X. Liu, W. Jiang, J. Ren, H.W. Wang, G.T. Fan, J.J. He, X.G. Cao, L.L. Song, Y. Zhang, X.R. Hu, Z.R. Hao, P. Kuang, B. Jiang, X.H. Wang, J.F. Hu, J.C. Wang, D.X. Wang, S.Y. Zhang, Y.D. Liu, X. Ma, C.W. Ma, Y.T. Wang, Z.D. An, J. Su, L.Y. Zhang, Y.X. Yang, W.B. Liu, W.Q. Su, S. Jin, K.J. Chen, Measurements of the \(^{107}\)Ag neutron capture cross sections with pulse height weighting technique at the CSNS Back-n facility. Chin. Phys. B 31(3), 038204 (2022). https://doi.org/10.1088/1674-1056/ac48fd. https://ui.adsabs.harvard.edu/abs/2022ChPhB.31c8204L/abstract

  36. Q. Wang, P. Cao, X. Qi, T. Yu, X. Ji, L. Xie, Q. An, General-purpose readout electronics for white neutron source at China spallation neutron source. Rev. Sci. Instrum. 89(1), 013511 (2018). https://doi.org/10.1063/1.5006346

    Article  ADS  Google Scholar 

  37. R.L. Macklin, J.H. Gibbons, Capture-cross-section studies for 30–220 keV neutrons using a new technique. Phys. Rev. 159(4), 1007 (1967). https://doi.org/10.1103/PhysRev.159.1007

    Article  ADS  Google Scholar 

  38. P. Zugec, N. Colonna, D. Bosnar, S. Altstadt, J. Andrzejewski, L. Audouin, M. Barbagallo, V. Bécares, F. Becvár, F. Belloni, E. Berthoumieux, J. Billowes, V. Boccone, M. Brugger, M. Calviani, F. Calviño, D. Cano-Ott, C. Carrapiço, F. Cerutti, E. Chiaveri, M. Chin, G. Cortés, M.A. Cortés-Giraldo, M. Diakaki, C. Domingo-Pardo, R. Dressler, I. Duran, N. Dzysiuk, C. Eleftheriadis, A. Ferrari, K. Fraval, S. Ganesan, A.R. García, G. Giubrone, M.B. Gómez-Hornillos, I.F. Gonçalves, E. González-Romero, E. Griesmayer, C. Guerrero, F. Gunsing, P. Gurusamy, S. Heinitz, D.G. Jenkins, E. Jericha, Y. Kadi, F. Käppeler, D. Karadimos, N. Kivel, P. Koehler, M. Kokkoris, M. Krticka, J. Kroll, C. Langer, C. Lederer, H. Leeb, L.S. Leong, S.L. Meo, R. Losito, A. Manousos, J. Marganiec, T. Martínez, C. Massimi, P.F. Mastinu, M. Mastromarco, M. Meaze, E. Mendoza, A. Mengoni, P.M. Milazzo, F. Mingrone, M. Mirea, W. Mondalaers, C. Paradela, A. Pavlik, J. Perkowski, A. Plompen, J. Praena, J.M. Quesada, T. Rauscher, R. Reifarth, A. Riego, F. Roman, C. Rubbia, R. Sarmento, A. Saxena, P. Schillebeeckx, S. Schmidt, D. Schumann, G. Tagliente, J.L. Tain, D. Tarrío, L. Tassan-Got, A. Tsinganis, S. Valenta, G. Vannini, V. Variale, P. Vaz, A. Ventura, R. Versaci, M.J. Vermeulen, V. Vlachoudis, R. Vlastou, A. Wallner, T. Ware, M. Weigand, C. Weiß, T. Wright, GEANT4 simulation of the neutron background of the C\(_{6}\)D\(_{6}\) set-up for capture studies at n_tof. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 760, 57–67 (2014). https://doi.org/10.1016/j.nima.2014.05.048

    Article  ADS  Google Scholar 

  39. J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Barrand, B.R. Beck, A.G. Bogdanov, D. Brandt, J.M.C. Brown, H. Burkhardt, P. Canal, D. Cano-Ott, S. Chauvie, K. Cho, G.A.P. Cirrone, G. Cooperman, M.A. Cortés-Giraldo, G. Cosmo, G. Cuttone, G. Depaola, L. Desorgher, X. Dong, A. Dotti, V.D. Elvira, G. Folger, Z. Francis, A. Galoyan, L. Garnier, M. Gayer, K.L. Genser, V.M. Grichine, S. Guatelli, P. Guèye, P. Gumplinger, A.S. Howard, I. Hrivnácová, S. Hwang, S. Incerti, A. Ivanchenko, V.N. Ivanchenko, F.W. Jones, S.Y. Jun, P. Kaitaniemi, N. Karakatsanis, M. Karamitros, M. Kelsey, A. Kimura, T. Koi, H. Kurashige, A. Lechner, S.B. Lee, F. Longo, M. Maire, D. Mancusi, A. Mantero, E. Mendoza, B. Morgan, K. Murakami, T. Nikitina, L. Pandola, P. Paprocki, J. Perl, I. Petrovic, M.G. Pia, W. Pokorski, J.M. Quesada, M. Raine, M.A. Reis, A. Ribon, A.R. Fira, F. Romano, G. Russo, G. Santin, T. Sasaki, D. Sawkey, J.I. Shin, I.I. Strakovsky, A. Taborda, S. Tanaka, B. Tomé, T. Toshito, H.N. Tran, P.R. Truscott, L. Urban, V. Uzhinsky, J.M. Verbeke, M. Verderi, B.L. Wendt, H. Wenzel, D.H. Wright, D.M. Wright, T. Yamashita, J. Yarba, H. Yoshida, Recent developments in Geant4. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 835, 186–225 (2016). https://doi.org/10.1016/j.nima.2016.06.125

    Article  ADS  Google Scholar 

  40. J. Ren, X. Ruan, W. Jiang, J. Bao, G. Luan, Q. Zhang, H. Huang, Y. Nie, Z. Ge, Q. An, H. Bai, Y. Bao, P. Cao, H. Chen, Q. Chen, Y. Chen, Y. Chen, Z. Chen, Z. Cui, R. Fan, C. Feng, K. Gao, M. Gu, C. Han, Z. Han, G. He, Y. He, Y. Hong, W. Huang, X. Huang, X. Ji, X. Ji, H. Jiang, Z. Jiang, H. Jing, L. Kang, M. Kang, B. Li, C. Li, J. Li, L. Li, Q. Li, X. Li, Y. Li, R. Liu, S. Liu, X. Liu, Q. Mu, C. Ning, B. Qi, Z. Ren, Y. Song, Z. Song, H. Sun, K. Sun, X. Sun, Z. Sun, Z. Tan, H. Tang, J. Tang, X. Tang, B. Tian, L. Wang, P. Wang, Q. Wang, T. Wang, Z. Wang, J. Wen, Z. Wen, Q. Wu, X. Wu, X. Wu, L. Xie, Y. Yang, H. Yi, L. Yu, T. Yu, Y. Yu, G. Zhang, L. Zhang, X. Zhang, Y. Zhang, Z. Zhang, Y. Zhao, L. Zhou, Z. Zhou, D. Zhu, K. Zhu, P. Zhu, Background study for (n, \(\gamma \)) cross section measurements with C\(_{6}\)D\(_{6}\) detectors at CSNS Back-n. Nucl. Instrum. Methods Phys. Res. Sect. A 985, 164703 (2021). https://doi.org/10.1016/j.nima.2020.164703

    Article  Google Scholar 

  41. J. Ren, X. Ruan, J. Bao, G. Luan, In-beam gamma-rays of back-streaming white neutron source at china spallation neutron source. Acta. Phys. Sin. 69(17), 9 (2020). https://doi.org/10.7498/aps.69.20200718. http://kgo.ckcest.cn/kgo/detail/1002/dw_journal_article_20210417/96772b2c23904c3d09ec191c4a4c13ac.html

  42. C. Lederer, N. Colonna, C. Domingo-Pardo, F. Gunsing, F. Käppeler, C. Massimi, A. Mengoni, A. Wallner, U. Abbondanno, G. Aerts, H. Álvarez, F. Álvarez Velarde, S. Andriamonje, J. Andrzejewski, P. Assimakopoulos, L. Audouin, G. Badurek, M. Barbagallo, P. Baumann, F. Becvár, F. Belloni, E. Berthoumieux, M. Calviani, F. Calviño, D. Cano-Ott, R. Capote, C. Carrapiço, A. Carrillo de Albornoz, P. Cennini, V. Chepel, E. Chiaveri, G. Cortes, A. Couture, J. Cox, M. Dahlfors, S. David, I. Dillmann, R. Dolfini, W. Dridi, I. Duran, C. Eleftheriadis, M. Embid-Segura, L. Ferrant, A. Ferrari, R. Ferreira-Marques, L. Fitzpatrick, H. Frais-Koelbl, K. Fujii, W. Furman, I. Goncalves, E. González-Romero, A. Goverdovski, F. Gramegna, E. Griesmayer, C. Guerrero, B. Haas, R. Haight, M. Heil, A. Herrera-Martinez, M. Igashira, S. Isaev, E. Jericha, Y. Kadi, D. Karadimos, D. Karamanis, M. Kerveno, V. Ketlerov, P. Koehler, V. Konovalov, E. Kossionides, M. Krticka, C. Lampoudis, H. Leeb, A. Lindote, I. Lopes, R. Losito, M. Lozano, S. Lukic, J. Marganiec, L. Marques, S. Marrone, T. Martínez, P. Mastinu, E. Mendoza, P.M. Milazzo, C. Moreau, M. Mosconi, F. Neves, H. Oberhummer, S. O’Brien, M. Oshima, J. Pancin, C. Papachristodoulou, C. Papadopoulos, C. Paradela, N. Patronis, A. Pavlik, P. Pavlopoulos, L. Perrot, M.T. Pigni, R. Plag, A. Plompen, A. Plukis, A. Poch, J. Praena, C. Pretel, J. Quesada, T. Rauscher, R. Reifarth, M. Rosetti, C. Rubbia, G. Rudolf, P. Rullhusen, J. Salgado, C. Santos, L. Sarchiapone, R. Sarmento, I. Savvidis, C. Stephan, G. Tagliente, J.L. Tain, D. Tarrío, L. Tassan-Got, L. Tavora, R. Terlizzi, G. Vannini, P. Vaz, A. Ventura, D. Villamarin, V. Vlachoudis, R. Vlastou, F. Voss, S. Walter, H. Wendler, M. Wiescher, K. Wisshak, \(^{197}Au(n,\gamma )\) cross section in the unresolved resonance region. Phys. Rev. C 83(3), 034608 (2011). https://doi.org/10.1103/PhysRevC.83.034608

    Article  ADS  Google Scholar 

  43. R.L. Macklin, J. Halperin, R.R. Winters, Absolute neutron capture yield calibration. Nucl. Inst. Methods 164(1), 213–214 (1979). https://doi.org/10.1016/0029-554X(79)90457-9

    Article  ADS  Google Scholar 

  44. U. Abbondanno, G. Aerts, H. Alvarez, S. Andriamonje, A. Angelopoulos, P. Assimakopoulos, C.O. Bacri, G. Badurek, P. Baumann, F. Becvár, H. Beer, J. Benlliure, B. Berthier, E. Berthomieux, S. Boffi, C. Borcea, E. Boscolo-Marchi, N. Bustreo, P. Calviño, D. Cano-Ott, R. Capote, P. Carlson, P. Cennini, V. Chepel, E. Chiaveri, C. Coceva, N. Colonna, G. Cortes, D. Cortina, A. Couture, J. Cox, S. Dababneh, M. Dahlfors, S. David, R. Dolfini, C. Domingo-Pardo, I. Duran, C. Eleftheriadis, M. Embid-Segura, L. Ferrant, A. Ferrari, L. Ferreira-Lourenco, R. Ferreira-Marques, H. Frais-Koelbl, W.I. Furman, Y. Giomataris, I.F. Goncalves, E. Gonzalez-Romero, A. Goverdovski, F. Gramegna, E. Griesmayer, F. Gunsing, R. Haight, M. Heil, A. Herrera-Martinez, K.G. Ioannides, N. Janeva, E. Jericha, F. Käppeler, Y. Kadi, D. Karamanis, A. Kelic, V. Ketlerov, G. Kitis, P.E. Koehler, V. Konovalov, E. Kossionides, V. Lacoste, H. Leeb, A. Lindote, M.I. Lopes, M. Lozano, S. Lukic, S. Markov, S. Marrone, J. Martinez-Val, P. Mastinu, A. Mengoni, P.M. Milazzo, E. Minguez, A. Molina-Coballes, C. Moreau, F. Neves, H. Oberhummer, S. O’Brien, J. Pancin, T. Papaevangelou, C. Paradela, A. Pavlik, P. Pavlopoulos, A. Perez-Parra, J.M. Perlado, L. Perrot, V. Peskov, R. Plag, A. Plompen, A. Plukis, A. Poch, A. Policarpo, C. Pretel, J.M. Quesada, M. Radici, S. Raman, W. Rapp, T. Rauscher, R. Reifarth, F. Rejmund, M. Rosetti, C. Rubbia, G. Rudolf, P. Rullhusen, J. Salgado, E. Savvidis, J.C. Soares, C. Stephan, G. Tagliente, J.L. Tain, C. Tapia, L. Tassan-Got, L.M.N. Tavora, R. Terlizzi, M. Terrani, N. Tsangas, G. Vannini, P. Vaz, A. Ventura, D. Villamarin-Fernandez, M. Vincente-Vincente, V. Vlachoudis, R. Vlastou, F. Voss, H. Wendler, M. Wiescher, K. Wisshak, L. Zanini, New experimental validation of the pulse height weighting technique for capture cross-section measurements. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 521(2), 454–467 (2004). https://doi.org/10.1016/j.nima.2003.09.066

    Article  ADS  Google Scholar 

  45. J. Ren, X. Ruan, J. Bao, G. Luan, W. Jiang, Q. An, H. Bai, P. Cao, Q. Chen, Y. Chen, P. Cheng, Z. Cui, R. Fan, C. Feng, M. Gu, F. Guo, C. Han, Z. Han, G. He, Y. He, Y. He, H. Huang, W. Huang, X. Huang, X. Ji, X. Ji, H. Jiang, H. Jing, L. Kang, M. Kang, B. Li, L. Li, Q. Li, X. Li, Y. Li, R. Liu, S. Liu, X. Liu, Y. Ma, C. Ning, B. Qi, Z. Song, H. Sun, X. Sun, Z. Sun, Z. Tan, H. Tang, J. Tang, P. Wang, Q. Wang, T. Wang, Y. Wang, Z. Wang, Z. Wang, J. Wen, Z. Wen, Q. Wu, X. Wu, X. Wu, L. Xie, Y. Yang, H. Yi, L. Yu, T. Yu, Y. Yu, G. Zhang, J. Zhang, L. Zhang, L. Zhang, Q. Zhang, Q. Zhang, X. Zhang, Y. Zhang, Z. Zhang, Y. Zhao, L. Zhou, Z. Zhou, D. Zhu, K. Zhu, P. Zhu, The C\(_{6}\)D\(_{6}\) detector system on the Back-n beam line of CSNS. Radiat. Detect. Technol. Methods 3(3), 1–9 (2019). https://doi.org/10.1007/s41605-019-0129-8

    Article  Google Scholar 

  46. N.M. Larson, Updated user’s guide for Sammy: multilevel R-matrix fits to neutron data using Bayes’ equations. Tech. Rep. ORNL/TM-9179/R8 (2008). https://doi.org/10.2172/941054. https://www.osti.gov/biblio/941054

  47. A. Borella, G. Aerts, F. Gunsing, M. Moxon, P. Schillebeeckx, R. Wynants, The use of C\(_{6}\)D\(_{6}\) detectors for neutron induced capture cross-section measurements in the resonance region. Nucl. Instrum. Methods Phys. Res. Sect. A 577(3), 626–640 (2007). https://doi.org/10.1016/j.nima.2007.03.034

    Article  ADS  Google Scholar 

  48. P. Schillebeeckx, B. Becker, Y. Danon, K. Guber, H. Harada, J. Heyse, A.R. Junghans, S. Kopecky, C. Massimi, M.C. Moxon, N. Otuka, I. Sirakov, K. Volev, Determination of resonance parameters and their covariances from neutron induced reaction cross section data. Nucl. Data Sheets 113(12), 3054–3100 (2012). https://doi.org/10.1016/j.nds.2012.11.005

    Article  ADS  Google Scholar 

  49. A.J. Koning, S. Hilaire, M.C. Duijvestijn, TALYS: comprehensive nuclear reaction modeling. AIP Conf. Proc. 769(1), 1154–1159 (2005). https://doi.org/10.1063/1.1945212

    Article  ADS  Google Scholar 

  50. N. Yamamuro, T. Doi, T. Miyagawa, Y. Fujita, K. Kobayashi, R.C. Block, Measurement of neutron capture cross sections with Fe-filtered beam. J. Nucl. Sci. Technol. 15(9), 637–644 (1978). https://doi.org/10.1080/18811248.1978.9735566

Download references

Acknowledgements

The authors are indebted to the operating crew of the CSNS Back-n white neutron source. Dr. Peter Schillebeeckx from EU-JRC-IRMM is appreciated for the helpful discussions. This work was supported by the National Natural Science Foundation of China (Grant no. 11790321) and the Youth Talent Program of China National Nuclear Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xichao Ruan.

Additional information

Communicated by Aurora Tumino.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Ren, J., Jiang, W. et al. Determination of the \(^{232}Th(n,\gamma )\) cross section from 10 to 200 keV at the Back-n facility at CSNS. Eur. Phys. J. A 59, 224 (2023). https://doi.org/10.1140/epja/s10050-023-01126-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01126-0

Navigation