Skip to main content
Log in

A large area 3He tube array detector with vacuum operation capacity for the SANS instrument at the CSNS

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

abstract

The small-angle neutron scattering (SANS) instrument, one of the first three instruments of the China Spallation Neutron Source (CSNS), is designed to probe the microscopic and mesoscopic structures of materials in the scale range 1–100 nm. A large-area 3He tube array detector has been constructed and operates at the CSNS SANS instrument since August 2018. It consists of 120 linear position-sensitive detector tubes, each 1 m in length and 8 mm in diameter, and filled with 3He gas at 20 bar to obtain a high detection efficiency. The 3He tubes were divided into ten modules, providing an overall area of 1000 mm × 1020 mm with a high count rate capability. Because each tube is installed independently, the detector can be quickly repaired in situ by replacing damaged tubes. To reduce air scattering, the SANS detector must operate in a vacuum environment (0.1 mbar). An all-metal sealing technique was adopted to avoid high-voltage breakdown by ensuring a high-voltage connection and an electronic system working in an atmospheric environment. A position resolution of 7.8 ± 0.1 mm (full width at maximum) is measured along the length of the tubes, with a high detection efficiency of 81 ± 2% at 2 Å. Operating over the past four years, the detector appears to perform well and with a high stability, which supports the SANS instrument to finish approximately 200 user scientific programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.S. Chen, X.L. Wang, China’s first pulsed neutron source. Nat. Mater 15, 689–691 (2016). https://doi.org/10.1038/nmat4655

    Article  ADS  Google Scholar 

  2. X.-M. Jin, Y. Liu, C.-L. Su et al., Ionizing and non-ionizing kerma factors in silicon for China spallation neutron source neutron spectrum. Nucl. Sci. Tech. 30, 143 (2019). https://doi.org/10.1007/s41365-019-0664-5

    Article  Google Scholar 

  3. J.-Y. Tang, Q. An, J.-B. Bai et al., Back-n white neutron source at CSNS and its applications. Nucl. Sci. Tech. 32, 11 (2021). https://doi.org/10.1007/s41365-021-00846-6

    Article  Google Scholar 

  4. Y.B. Ke, C.Y. He, H.B. Zheng et al., The time-of-flight small-angle neutron spectrometer at China spallation neutron source. Neutron News 29, 14–17 (2018). https://doi.org/10.1080/10448632.2018.1514197

    Article  Google Scholar 

  5. K. Zhou, J.-R. Zhou, Y.-S. Song et al., Compact lithium-glass neutron beam monitor for SANS at CSNS. Nucl. Sci. Tech. 29, 127 (2018). https://doi.org/10.1007/s41365-018-0468-z

    Article  Google Scholar 

  6. Y. Noda, H. Izunome, T. Maeda et al., The large-area detector for small-angle neutron scattering on iMATERIA at J-PARC. Quantum Beam Sci. 4, 32 (2020). https://doi.org/10.3390/qubs4040032

    Article  ADS  Google Scholar 

  7. Z.W. Fu, Y.K. Heng, S.J. Gu et al., Efficiency-determined method for thermal neutron detection with inorganic scintillator. Nucl. Sci. Tech. 24(4), 040205 (2013). https://doi.org/10.13538/j.1001-8042/nst.2013.04.010

    Google Scholar 

  8. R. Kampmann, M. Marmotti, M. Haese-Seiller et al., 2D-MWPC for the new reflectometer REFSANS/FRM-II: performance of the prototype. Nucl. Instrum. Methods Phys. Res. A 529, 342–347 (2004). https://doi.org/10.1016/j.nima.2004.05.009

    Article  ADS  Google Scholar 

  9. J.J. Zhou, J.R. Zhou, X.J. Zhou et al., A sealed ceramic GEM-based neutron detector. Nucl. Instrum. Methods Phys. Res. A 995, 165129 (2021). https://doi.org/10.1016/j.nima.2021.165129

    Article  Google Scholar 

  10. X.F. Jiang, Q.L. Xiu, J.R. Zhou et al., Study on the neutron imaging detector with high spatial resolution at China spallation neutron source. Nucl. Eng. Technol. 53, 1942–1946 (2021). https://doi.org/10.1016/j.net.2020.12.009

    Article  Google Scholar 

  11. J.R. Zhou, X.J. Zhou, J.J. Zhou et al., A ceramic GEM-based neutron beam monitor for China spallation neutron source. Nucl. Instrum. Methods Phys. Res. A 962, 163593 (2020). https://doi.org/10.1016/j.nima.2020.163593

    Article  Google Scholar 

  12. J.R. Zhou, X.J. Zhou, J.J. Zhou et al., A novel ceramic GEM used for neutron detection. Nucl. Eng. Technol. 52, 1277–1281 (2020). https://doi.org/10.1016/j.net.2019.11.021

    Article  Google Scholar 

  13. J.Q. Yang, J.R. Zhou, X.F. Jiang et al., A novel energy resolved neutron imaging detector based on a time stamping optical camera for the CSNS. Nucl. Instrum. Methods Phys. Res. A 1000, 165222 (2021). https://doi.org/10.1016/j.nima.2021.165222

    Article  Google Scholar 

  14. J.Q. Yang, J.R. Zhou, L.J. Zhang et al., Recent measurements at the CSNS towards the construction of a nMCP detector for the energy resolved neutron imaging instrument. Nucl. Instrum. Methods Phys. Res. A 1003, 165322 (2021). https://doi.org/10.1016/j.nima.2021.165322

    Article  Google Scholar 

  15. D. Duxbury, Performance of the neutron detectors of the WISH diffractometer at ISIS. In: Proceedings of the 2010 Vienna conference on instrumentation, Vienna Austria. (2010)

  16. D. Duxbury, R. Heenan, D. McPhail et al., Performance characteristics of the new detector array for the SANS2d instrument on the ISIS spallation neutron source. J. Inst. 9, C12051 (2014). https://doi.org/10.1088/1748-0221/9/12/C12051

    Article  Google Scholar 

  17. X.G. Wu, Y.B. Zhao, H. Luo et al., Test of a 3He neutron detector readout electronics prototype for CSNS multipurpose physics neutron diffractometer. RDTM 5, 200–206 (2021). https://doi.org/10.1007/s41605-020-00235-4

    Article  Google Scholar 

  18. K.D. Berry, K.M. Bailey, J. Beal et al., Characterization of the neutron detector upgrade to the GP-SANS and Bio-SANS instruments at HFIR. Nucl. Instrum. Methods Phys. Res. A 693, 179–185 (2012). https://doi.org/10.1016/j.nima.2012.06.052

    Article  ADS  Google Scholar 

  19. R.A. Riedel, R.G. Cooper, L.L. Funk et al., Design and performance of vacuum capable detector electronics for linear position sensitive neutron detectors. Nucl. Instrum. Methods Phys. Res. A 664, 366–369 (2012). https://doi.org/10.1016/j.nima.2011.08.038

    Article  ADS  Google Scholar 

  20. M.X. Zhang, Y.Y. Lai, M. Li et al., The microscopic structure–property relationship of metal–organic polyhedron nanocomposite. Angew. Chem. Int. Ed. 58, 17412–17417 (2019). https://doi.org/10.1002/anie.201909241

    Article  Google Scholar 

  21. W.J. Li, W. Wang, X.Q. Wang et al., Daisy chain dendrimers: Integrated mechanically interlocked molecules with stimuli-induced dimension modulation feature. J. Am. Chem. Soc. 142, 8473–8482 (2020). https://doi.org/10.1021/jacs.0c02475

    Article  Google Scholar 

  22. J.F. Yin, Z. Zheng, J.S. Yang et al., Unexpected elasticity in assemblies of glassy supra-nanoparticle Clusters. Angew. Chem. Int. Ed. 60, 4894–4900 (2020). https://doi.org/10.1002/anie.202013361

    Article  Google Scholar 

  23. D.W. Xiao, Y.B. Ke, C.C. Wang et al., Bi-continuous porous structures from the selective dissolution of ionic solid solutions. Scr. Mater. 199, 113865 (2021). https://doi.org/10.1016/j.scriptamat.2021.113865

    Article  Google Scholar 

  24. C.Y. He, T. Bo, Y.B. Ke et al., Black potassium titanate nanobelts: Ultrafast and durable aqueous redox electrolyte energy storage. J. Power Sources 483, 229140 (2021). https://doi.org/10.1016/j.jpowsour.2020.229140

    Article  Google Scholar 

  25. W.X. Dong, J.C. Ge, Y.B. Ke et al., In-situ observation of an unusual phase transformation pathway with Guinier-Preston zone-like precipitates in Zr-based bulk metallic glasses. J. Alloys Compd. 819, 153049 (2020). https://doi.org/10.1016/j.jallcom.2019.153049

    Article  Google Scholar 

  26. J.F. Yin, H. Xiao, P. Xu et al., Polymer topology reinforced synergistic interactions among nanoscale molecular clusters for impact resistance with facile processability and recoverability. Angew. Chem. Int. Ed. 60, 22212–22218 (2021). https://doi.org/10.1002/ange.202108196

    Article  Google Scholar 

  27. Y. Wang, S. Lin, H. Jiang et al., Visualizable delivery of nanodisc antigen-conjugated adjuvant for cancer immunotherapy. CCS Chem. 4(4), 1238–1250 (2022). https://doi.org/10.31635/ccschem.021.202000670

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Xing-Fen Jiang, Jian-Rong Zhou, Hong Luo, Liang Xiao, Xiao-Juan Zhou, Hong Xu, Yuan-Guang Xia, Xiao-Guang Wu, Lin Zhu, Wen-Qing Yang, Gui-An Yang and Bei-Ju Guan. The first draft of the manuscript was written by Xing-Fen Jiang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jian-Rong Zhou or Zhi-Jia Sun.

Additional information

This work was supported by the National Key R&D Program of China (No. 2021YFA1600703), the National Natural Science Foundation of China (No. 12175254), the Youth Innovation Promotion Association CAS, the China Spallation Neutron Source Project, and the Innovative Projects of the IHEP (No. E15459U210).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, XF., Zhou, JR., Luo, H. et al. A large area 3He tube array detector with vacuum operation capacity for the SANS instrument at the CSNS. NUCL SCI TECH 33, 89 (2022). https://doi.org/10.1007/s41365-022-01067-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-022-01067-1

Keywords

Navigation