Skip to main content
Log in

Measurement of 232Th(n,5n γ) cross sections from 29 MeV to 42 MeV

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The excitation function of the reaction 232 Th(n, 5)228 Th from 29 to 42 MeV has been measured for the first time at the quasi-monoenergetic neutron beam of the UCL cyclotron CYCLONE employing the 7Li(p,n) source reaction. Taking advantage of the good energy resolution of the planar High-Purity Germanium (HPGe) detectors, prompt γ-ray spectroscopy was used to detect the γ-rays resulting from the decay of excited states of nuclei created by the (n,xn) reactions. The neutron beam was characterized by a combination of time of flight measurements carried out using a liquid scintillation detector and a 238U fission ionization chamber. Fluence measurements were performed using a proton recoil telescope. The results are compared with TALYS-1.4 code calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kerveno et al., Phys. Rev. C 87, 024609 (2013).

    Article  ADS  Google Scholar 

  2. J.C. Thiry, in Proceedings of NEMEA-6, Neutron Measurements, Evaluations and Applications, 2010 (Krakow, Poland, 2011) http://www.oecd-nea.org/science/wpec/nemea6/.

  3. J.C. Thiry et al., J. Korean Phys. Soc. 59, 1880 (2011).

    Article  Google Scholar 

  4. J.M. Salomé, R. Cools, Nucl. Instrum. Methods 179, 13 (1981).

    Article  ADS  Google Scholar 

  5. D. Ene et al., Nucl. Instrum. Methods Phys. Res. A 618, 54 (2010).

    Article  ADS  Google Scholar 

  6. L.C. Mihailescu et al., Nucl. Instrum. Methods Phys. Res. A 531, 375 (2004).

    Article  ADS  Google Scholar 

  7. L.C. Mihailescu, PhD thesis, University of Bucharest (2006).

  8. C. Dupont et al., Nucl. Instrum. Methods Phys. Res. A 256, 197 (1987).

    Article  ADS  Google Scholar 

  9. R. Nolte et al., Nucl. Instrum. Methods Phys. Res. A 476, 369 (2002).

    Article  ADS  Google Scholar 

  10. D.B. Gayther, Metrologia 27, 221 (1990).

    Article  ADS  Google Scholar 

  11. V. Dangendorf et al., Nucl. Instrum. Methods Phys. Res. A 469, 205 (2001).

    Article  ADS  Google Scholar 

  12. J.K. Dickens, Report ORNL-6462, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (1988).

  13. A.D. Carlson, S. China, F.J. Hambsch, N. Olsson, A.N. Smirnov, Report INDC(NDS) - 368 (International Atomic Energy Agency, Vienna, 1997).

  14. R. Arndt, in Proceedings of a Specialists' Meeting on Neutron Cross Section Standards for the Energy Range above 20 MeV OECD Report NEANDC-305/U (Uppsala, Sweden, 1991).

  15. R. Nolte et al., Nucl. Sci. Eng. 156, 197 (2007).

    Article  Google Scholar 

  16. H. Schuhmacher, B. Siebert, H. Brede, in Proceedings of a Specialists' Meeting on Neutron Cross Section Standards for the Energy Range above 20 MeV OECD Report NEANDC-305/U (Uppsala, Sweden, 1991).

  17. S.G. Mashnik, M.B. Chadwick, P.G. Young, R. MacFarlane, L.S. Waters, 7Li(p,n) Nuclear Data Library for Incident Proton Energies to 150 MeV, Los Alamos National Laboratory Report LA-UR-00-1067 (Los Alamos, 2000).

  18. C.R. Brune, Nucl. Instrum. Methods Phys. Res. A 493, 106 (2002).

    Article  ADS  Google Scholar 

  19. MCNPX, http://mcnpx.lanl.gov/.

  20. T. Kibédi et al., Nucl. Instrum. Methods Phys. Res. A 589, 202 (2008).

    Article  ADS  Google Scholar 

  21. A.J. Koning, S. Hilaire, M.C. Duijvestijn, in Proceedings of the International Conference on Nuclear Data for Science and Technology, CP 769 (AIP, USA, 2005) p. 1154.

  22. D.J. Lunn et al., Stat. Comput. 10, 325 (2000).

    Article  Google Scholar 

  23. A.J. Koning, S. Hilaire, M.C. Duijvestijn, in Proceedings of the International Conference on Nuclear Data for Science and Technology (EDP Sciences, 2008) pp. 211--214.

  24. A.J. Koning, private communication (2013).

  25. E. Soukhovitskii et al., J. Phys. G: Nucl. Part. Phys. 30, 905 (2004).

    Article  ADS  Google Scholar 

  26. A. Koning et al., Nucl. Sci. Eng. 156, 357 (2007).

    Google Scholar 

  27. R. Capote et al., Nucl. Data Sheets 110, 3107 (2009).

    Article  ADS  Google Scholar 

  28. T. Kawano et al., Nucl. Instrum. Methods Phys. Res. A 562, 774 (2006).

    Article  ADS  Google Scholar 

  29. H. Feshbach et al., Ann. Phys. (N.Y.) 125, 429 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  30. T.U.T. Tamura, H. Lenske, Phys. Rev. C 26, 379 (1982).

    Article  ADS  Google Scholar 

  31. M. Kerveno et al., EPJ Web of Conference 42, 01005 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kerveno.

Additional information

Communicated by P. Woods

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerveno, M., Nolte, R., Baumann, P. et al. Measurement of 232Th(n,5n γ) cross sections from 29 MeV to 42 MeV. Eur. Phys. J. A 50, 162 (2014). https://doi.org/10.1140/epja/i2014-14162-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14162-2

Keywords

Navigation