Skip to main content
Log in

Large area 3He tube array detector with modular design for multi-physics instrument at CSNS

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The multi-physics instrument (MPI) is the first user cooperative instrument at the China Spallation Neutron Source (CSNS). It was designed to explore the structures of complex materials at multiple scales based on the neutron total scattering technique. This imposes the requirements for the detector, including a high detection efficiency to reduce the measurement time and a large solid angle coverage to cover a wide range of momentum transfers. To satisfy these demands, a large-area array of 3He-filled linear position-sensitive detectors (LPSDs) was constructed, each with a diameter of 1 inch and pressure of 20 atm. It uses an orbicular layout of the detector and an eight-pack module design for the arrangement of 3He LPSDs, covering a range of scattering angles from 3° to 170° with a total detector area of approximately 7 m2. The detector works in air, which is separated from the vacuum environment to facilitate installation and maintenance. The characteristics of the MPI detector were investigated through Monte Carlo (MC) simulations using Geant4 and experimental measurements. The results suggest that the detectors are highly efficient in the wavelength range of the MPI, and an efficiency over 25% is achievable for above 0.1 Å neutrons. A minimal position resolution of 6.4 mm full width at half maximum (FWHM) along the tube length was achieved at a working voltage of 2200 V, and a deviation below 2 mm between the real and measured positions was attained in the beam experiment. The detector module exhibited good consistency and an excellent counting rate capacity of up to 80 kHz, which satisfied the requirements of experiments with a high event rate. Observations of its operation over the past year have shown that the detector works steadily in sample experiments, which allows the MPI to serve the user program successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7

Similar content being viewed by others

References

  1. T.E. Mason, D. Abernathy, I. Anderson et al., The Spallation Neutron Source in Oak Ridge: A powerful tool for materials research. Physica. B 385–386, 955–960 (2006). https://doi.org/10.1016/j.physb.2006.05.281

    Article  ADS  Google Scholar 

  2. J.W. Thomason, The ISIS spallation neutron and muon source—The first thirty-three years. Nucl. Instrum. Meth. A 917, 61–67 (2019). https://doi.org/10.1016/j.nima.2018.11.129

    Article  ADS  Google Scholar 

  3. Y. Oyama, J-PARC and new era of science. Nucl. Instrum. Meth. A 562, 548–552 (2006). https://doi.org/10.1016/j.nima.2006.02.139

    Article  ADS  Google Scholar 

  4. H.S. Chen, X.L. Wang, China’s first pulsed neutron source. Nat. Mater 15, 689–691 (2016). https://doi.org/10.1038/nmat4655

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Lindroos, S. Bousson, R. Calaga et al., The European Spallation Source. Nucl. Instrum. Meth. B 269, 3258–3260 (2011). https://doi.org/10.1016/j.nimb.2011.04.012

    Article  ADS  Google Scholar 

  6. T.Y. Tang, Q. An, J.B. Bai et al., Back-n white neutron source at CSNS and its applications. Nucl. Sci. Tech. 32, 11 (2021). https://doi.org/10.1007/s41365-021-00846-6

    Article  Google Scholar 

  7. X.R. Xu, G.T. Fan, W. Jiang et al., Measurements of the 197Au(n, γ) cross section up to 100 keV at the CSNS Back-n facility. Nucl. Sci. Tech. 32, 101 (2021). https://doi.org/10.1007/s41365-021-00931-w

    Article  Google Scholar 

  8. Y.B. Ke, C.Y. He, H.B. Zheng et al., The time-of-flight Small-Angle Neutron Spectrometer at China Spallation Neutron Source. Neutron News 29, 14–17 (2018). https://doi.org/10.1080/10448632.2018.1514197

    Article  Google Scholar 

  9. X.F. Jiang, J.R. Zhou, H. Luo et al., A large area 3He tube array detector with vacuum operation capacity for the SANS instrument at the CSNS. Nucl. Sci. Tech. 33, 89 (2022). https://doi.org/10.1007/s41365-022-01067-1

    Article  Google Scholar 

  10. T. Zhu, X.Z. Zhan, S.W. Xiao et al., MR: The multipurpose reflectometer at CSNS. Neutron News 29, 11–13 (2018). https://doi.org/10.1080/10448632.2018.1514196

    Article  Google Scholar 

  11. J. Chen, L. Kang, H.L. Lu, The general purpose powder diffractometer at CSNS. Physica. B 551, 370–372 (2018). https://doi.org/10.1016/j.physb.2017.11.005

    Article  ADS  Google Scholar 

  12. A. Salman, J.R. Zhou, J.Q. Yang et al., First neutron Bragg-edge imaging experimental results at CSNS. Chin. Phys. Lett. 33, 062901 (2022). https://doi.org/10.1088/0256-307X/39/6/062901

    Article  ADS  Google Scholar 

  13. J. Chen, Z.J. Tan, W.Q. Liu et al., First neutron Bragg-edge imaging experimental results at CSNS*. Chin. Phys. B 30, 9 (2021). https://doi.org/10.1088/1674-1056/ac0da7

    Article  Google Scholar 

  14. J.P. Zhang, C.Y. Huang, Z.C. Qin et al., In-situ optical pumping for polarizing He-3 neutron spin filters at the China spallation neutron source. Sci. China Phys. Mech. Astron. 65, 241011 (2022). https://doi.org/10.1007/s11433-021-1876-0

    Article  ADS  Google Scholar 

  15. B. Wu, X. Li, Z. Li et al., Development of a large nanocrystalline soft magnetic alloy core with high mu ’pQf products for CSNS-II. Nucl. Sci. Tech. 33, 99 (2022). https://doi.org/10.1007/s41365-022-01087-x

    Article  Google Scholar 

  16. T.R. Liang, F. Shen, W. Yin et al., Monte Carlo shielding evaluation of a CSNS multi-physics instrument. Nucl. Eng. Technol. 51, 1998–2004 (2019). https://doi.org/10.1016/j.net.2019.06.006

    Article  Google Scholar 

  17. J.P. Xu, Y.G. Xia, Z.D. Li et al., Multi-physics instrument: total scattering neutron time-of-flight diffractometer at China spallation neutron source. Nucl. Instrum. Meth. A 1013, 165642 (2021). https://doi.org/10.1016/j.nima.2021.165642

    Article  Google Scholar 

  18. R.I. Bewley, J.W. Taylor, S.M. Bennington, LET, a cold neutron multi-disk chopper spectrometer at ISIS. Nucl. Instrum. Meth. A 637, 128–134 (2011). https://doi.org/10.1016/j.nima.2011.01.173

    Article  ADS  Google Scholar 

  19. J.K. Zhao, C.Y. Gao, D. Li et al., The extended Q-range small-angle neutron scattering diffractometer at the SNS. J. Appl. Crystallogy 43, 1068–1077 (2010). https://doi.org/10.1107/S002188981002217X

    Article  Google Scholar 

  20. J.D. Beal, K.D. Berry, R.A. Riedel et al., The NOMAD instrument neutron detector array at the SNS. Nucl. Instrum. Meth. A 1018, 165851 (2021). https://doi.org/10.1016/j.nima.2021.165851

    Article  Google Scholar 

  21. J. Ollivier, H. Mutka, L. Didier, The new cold neutron time-of-flight spectrometer IN5. Neutron News 21, 22–25 (2010). https://doi.org/10.1080/10448631003757573

    Article  Google Scholar 

  22. S. Agostinelli, J. Allison, K. Amako et al., Geant4—a simulation toolkit. Nucl. Instrum. Meth. A 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  ADS  Google Scholar 

  23. X.G. Wu, Y.B. Zhao, H. Luo et al., Test of a 3He neutron detector readout electronics prototype for CSNS multipurpose physics neutron diffractometer. RDTM 5, 200–206 (2021). https://doi.org/10.1007/s41605-020-00235-4

    Article  Google Scholar 

  24. S. Bönisch, B. Namaschk, F. Wulf, Charge equalizing and error estimation in position sensitive neutron detectors. Nucl. Instrum. Meth. A 570, 133–139 (2007). https://doi.org/10.1016/j.nima.2006.10.002

    Article  ADS  Google Scholar 

  25. A. Ravazzani, A.F. Para, R. Jaime et al., Characterisation of 3He proportional counters. Radiat. Meas. 41, 582–593 (2006). https://doi.org/10.1016/j.radmeas.2005.08.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Lin Zhu, Jian-Rong Zhou, Yuan-Guang Xia, Liang Xiao, Hong Luo, Xiao-Juan Zhou, Wen-Qin Yang, Bei-Ju Guan, Xing-Fen Jiang, Yan-Feng Wang, Hong Xu, Hai-Yun Teng, Li-Xin Zeng, Jia-Jie Li, Lei Hu, Ke Zhou, Yong-Xiang Qiu, Pei-Xun Shen, Jun Xu, Li-Jiang Liao, Xiao-Zhuang Wang, Gui-An Yang, Huai-Chan Chen, Ju-Ping Xu, Zhi-Duo Li, Song-Lin Wang. The first draft of the manuscript was written by Lin Zhu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jian-Rong Zhou or Zhi-Jia Sun.

Additional information

This work was supported by the National Key R&D Program of China (No. 2021YFA1600703), National Natural Science Foundation of China (No. 12175254), and Youth Innovation Promotion Association CAS.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Zhou, JR., Xia, YG. et al. Large area 3He tube array detector with modular design for multi-physics instrument at CSNS. NUCL SCI TECH 34, 1 (2023). https://doi.org/10.1007/s41365-022-01161-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-022-01161-4

Keywords

Navigation