Skip to main content
Log in

Metabarcoding and Metagenomics in Soil Ecology Research: Achievements, Challenges, and Prospects

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Modern progress in soil biology is associated with the use of new molecular biology methods based on the isolation of total DNA from soil and its further analysis. The two main approaches to the study of soil microbial DNA are metabarcoding, the identification of the community composition via analysis of the sequences of barcode marker genes, and metagenomics, the analysis of the collective genomes of the community. These two methods provide direct access to the enormous genetic diversity of the “uncultivated majority” of soil microorganisms and have become an essential part of many soil biology studies. The review considers the application of these research methods to the study of the ecology and diversity of soil microorganisms. The methodological limitations of molecular genetics methods due to soil specificity as an object of research are discussed. The achievements, challenges, and prospects of metabarcoding and metagenomics in soil ecology research, as well as their combination with other research approaches, are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Abia, A.L.K., Alisoltani, A., Ubomba-Jaswa, E., and Dippenaar, M.A., Microbial life beyond the grave: 16S rRNA gene-based metagenomic analysis of bacteria diversity and their functional profiles in cemetery environments, Sci. Total Environ., 2019, vol. 655, pp. 831–841.

    Article  CAS  PubMed  Google Scholar 

  2. Angly, F.E., Dennis, P.G., Skarshewski, A., Vanwonterghem, I., Hugenholtz, P., and Tyson, G.W., CopyRighter: a rapid tool for improving the accuracy of microbial community profiles through lineage-specific gene copy number correction, Microbiome, 2014, vol. 2, p. 11.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bailey, V.L., Smith, J.L., and Bolton, H., Jr., Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration, Soil Biol. Biochem., 2002, vol. 34, no. 7, pp. 997–1007.

    Article  CAS  Google Scholar 

  4. Bakker, P.A., Berendsen, R.L., Doornbos, R.F., Wintermans, P.C., and Pieterse, C.M., The rhizosphere revisited: root microbiomics, Front. Plant Sci., 2013, vol. 4, p. 165.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Baldrian, P., The known and the unknown in soil microbial ecology, FEMS Microbiol. Ecol., 2019, vol. 95, no. 2, art. ID fiz005.

    Article  CAS  Google Scholar 

  6. Baldrian, P., Kolarik, M., Stursova, M., Kopecky, J., Valaskova, V., et al., Active and total microbial communities in forest soil are largely different and highly stratified during decomposition, ISME J., 2012, vol. 6, no. 2, pp. 248–258.

    Article  CAS  PubMed  Google Scholar 

  7. Balvociute, M. and Huson, D.H., SILVA, RDP, Greengenes, NCBI and OTT—how do these taxonomies compare? BMC Genome, 2017, vol. 18, no. 2, p. 114.

    Article  Google Scholar 

  8. Banerjee, S., Schlaeppi, K., and Heijden, M.G., Keystone taxa as drivers of microbiome structure and functioning, Nat. Rev. Microbiol., 2018, vol. 16, pp. 567–576.

    Article  CAS  PubMed  Google Scholar 

  9. Banerjee, S., Walder, F., Buchi, L., Meyer, M., Held, A.Y., et al., Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots, ISME J., 2019, vol. 13, pp. 1722–1736.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Barberan, A., Bates, S.T., Casamayor, E.O., and Fierer, N., Using network analysis to explore co-occurrence patterns in soil microbial communities, ISME J., 2012, vol. 6, no. 2, pp. 343–351.

    Article  CAS  PubMed  Google Scholar 

  11. Bardgett, R.D., Bowman, W.D., Kaufmann, R., and Schmidt, S.K., A temporal approach to linking aboveground and belowground ecology, Trends Ecol. Evol., 2005, vol. 20, no. 11, pp. 634–641.

    Article  PubMed  Google Scholar 

  12. Bernard, L., Mougel, C., Maron, P.A., Nowak, V., Lévêque, J., et al., Dynamics and identification of soil microbial populations actively assimilating carbon from 13C-labelled wheat residue as estimated by DNA- and RNA-SIP techniques, Environ. Microbiol., 2007, vol. 9, no. 3, pp. 752–764.

    Article  CAS  PubMed  Google Scholar 

  13. Blagodatskaya, E. and Kuzyakov, Y., Active microorganisms in soil: critical review of estimation criteria and approaches, Soil Biol. Biochem., 2013, vol. 67, pp. 192–211.

    Article  CAS  Google Scholar 

  14. Blagodatskaya, E.V., Semenov, M.V., and Yakushev, A.V., Aktivnost’ i biomassa pochvennykh mikroorganizmov v izmenyayushchikhsya usloviyakh okruzhayushchei sredy (Activity and Biomass of Soil Microorganisms in Changing of Environmental Conditions), Moscow: KMK, 2016.

  15. Bohan, D.A., Vacher, C., Tamaddoni-Nezhad, A., Raybould, A., Dumbrell, A.J., and Woodward, G., Next-generation global biomonitoring: large-scale, automated reconstruction of ecological networks, Trends Ecol. Evol., 2017, vol. 32, no. 7, pp. 477–487.

    Article  PubMed  Google Scholar 

  16. Bouchez, T., Blieux, A.L., Dequiedt, S., Domaizon, I., Dufresne, A., et al., Molecular microbiology methods for environmental diagnosis, Environ. Chem. Lett., 2016, vol. 14, no. 4, pp. 423–441.

    Article  CAS  Google Scholar 

  17. Callahan, B.J., McMurdie, P.J., and Holme, S.P., Exact sequence variants should replace operational taxonomic units in marker-gene data analysis, ISME J., 2017, vol. 11, no. 12, pp. 2639–2943.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Carini, P., Marsden, P.J., Leff, J.W., Morgan, E.E., Strickland, M.S., and Fierer, N., Relic DNA is abundant in soil and obscures estimates of soil microbial diversity, Nat. Microbiol., 2017, vol. 2, p. 16242.

    Article  CAS  Google Scholar 

  19. Carugati, L., Corinaldesi, C., Dell’Anno, A., and Danovaro, R., Metagenetic tools for the census of marine meiofaunal biodiversity: an overview, Mar. Genomics, 2015, vol. 24, pp. 11–20.

    Article  PubMed  Google Scholar 

  20. Chen, C., Zhang, J., Lu, M., Qin, C., Chen, Y., et al., Microbial communities of an arable soil treated for 8 years with organic and inorganic fertilizers, Biol. Fertil. Soils, 2016, vol. 52, no. 4, pp. 455–467.

    Article  CAS  Google Scholar 

  21. Coissac, E., Riaz, T., and Puillandre, N., Bioinformatic challenges for DNA metabarcoding of plants and animals, Mol. Ecol., 2012, vol. 21, no. 8, pp. 1834–1847.

    Article  CAS  PubMed  Google Scholar 

  22. D’Amore, R., Ijaz, U.Z., Schirmer, M., Kenny, J.G., Gregory, R., et al., A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling, BMC Genome, 2016, vol. 17, p. 55.

    Article  CAS  Google Scholar 

  23. da Rocha, U.N., Andreote, F.D., de Azevedo, J.L., van Elsas, J.D., and van Overbeek, L.S., Cultivation of hitherto-uncultured bacteria belonging to the Verrucomicrobia subdivision 1 from the potato (Solanum tuberosum L.) rhizosphere, J. Soils Sediments, 2010, vol. 10, no. 2, pp. 326–339.

    Article  CAS  Google Scholar 

  24. Delmont, T.O., Prestat, E., Keegan, K.P., Faubladier, M., Robe, P., et al., Structure, fluctuation and magnitude of a natural grassland soil metagenome, ISME J., 2012, vol. 6, no. 9, pp. 1677–1687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ding, J., Zhang, Y., Deng, Y., Cong, J., Lu, H., et al., Integrated metagenomics and network analysis of soil microbial community of the forest timberline, Sci. Rep., 2015, vol. 5, p. 7994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Eilers, K.G., Debenport, S., Anderson, S., and Fierer, N., Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil, Soil Biol. Biochem., 2012, vol. 50, pp. 58–65.

    Article  CAS  Google Scholar 

  27. Esposito, A. and Kirschberg, M., How many 16S-based studies should be included in a metagenomic conference? It may be a matter of etymology, FEMS Microbiol. Lett., 2014, vol. 351, no. 2, pp. 145–146.

    Article  CAS  PubMed  Google Scholar 

  28. Fan, K., Weisenhorn, P., Gilbert, J.A., and Chu, H., Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil, Soil Biol. Biochem., 2018, vol. 125, pp. 251–260.

    Article  CAS  Google Scholar 

  29. Fierer, N., Leff, J.W., Adams, B.J., Nielsen, U.N., Bates, S.T., et al., Cross-biome metagenomic analyses of soil microbial communities and their functional attributes, Proc. Natl. Acad. Sci. U.S.A., 2012. vol. 109, no. 52, pp. 21390–21395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fierer, N., Ladau, J., Clemente, J.C., Leff, J.W., Owens, S.M., et al., Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States, Science, 2013, vol. 342, no. 6154, pp. 621–624.

    Article  CAS  PubMed  Google Scholar 

  31. Fonseca, V.G., Nichols, B., Lallias, D., Quince, C., Carvalho, G.R., et al., Sample richness and genetic diversity as drivers of chimera formation in nSSU metagenetic analyses, Nucleic Acids Res., 2012, vol. 40, no. 9, p. e66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Geisen, S., Laros, I., Vizcaíno, A., Bonkowski, M., and de Groot, G.A., Not all are free-living: high-throughput DNA metabarcoding reveals a diverse community of protists parasitizing soil metazoan, Mol. Ecol., 2015, vol. 24, no. 17, pp. 4556–4569.

    Article  CAS  PubMed  Google Scholar 

  33. Gorbacheva, M.A., Melnikova, N.V., Chechetkin, V.R., Kravatsky, Y.V., and Tchurikov, N.A., DNA sequencing and metagenomics of cultivated and uncultivated chernozems in Russia, Geoderma Reg., 2018, vol. 14, p. e00180.

    Article  Google Scholar 

  34. Grundmann, G.L., Spatial scales of soil bacterial diversity—the size of a clone, FEMS Microbiol. Ecol., 2004, vol. 48, no. 2, pp. 119–127.

    Article  CAS  PubMed  Google Scholar 

  35. Hamady, M. and Knight, R., Microbial community profiling for human microbiome projects: tools, techniques, and challenges, Genome Res., 2009, vol. 19, no. 7, pp. 1141–1152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Handelsman, J., Metagenetics: spending our inheritance on the future, Microb. Biotechnol., 2009, vol. 2, no. 2, pp. 138–139.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Handelsman, J., Rondon, M.R., Brady, S.F., Clardy, J., and Goodman, R.M., Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products, Chem. Biol., 1998, vol. 5, no. 10, pp. 245–249.

    Article  Google Scholar 

  38. Hesse, C.N., Mueller, R.C., Vuyisich, M., Gallegos-Graves, L.V., Gleasner, C.D., et al., Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests, Front. Microbiol., 2015, vol. 6, p. 337.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hirsch, P.R., Gilliam, L.M., Sohi, S.P., Williams, J.K., Clark, I.M., and Murray, P.J., Starving the soil of plant inputs for 50 years reduces abundance but not diversity of soil bacterial communities, Soil Biol. Biochem., 2009, vol. 41, no. 9, pp. 2021–2024.

    Article  CAS  Google Scholar 

  40. Hug, L.A., Baker, B.J., Anantharaman, K., Brown, C.T., Probst, A.J., et al., A new view of the tree of life, Nat. Microbiol., 2016, vol. 1, p. 16048.

    Article  CAS  PubMed  Google Scholar 

  41. Ibáñez de Aldecoa, A.L., Zafra, O., and González-Pastor, J.E., Mechanisms and regulation of extracellular DNA release and its biological roles in microbial communities, Front. Microbiol., 2017, vol. 8, p. 1390.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ji, Y., Ashton, L., Pedley, S.M., Edwards, D.P., Tang, Y., et al., Reliable, verifiable and efficient monitoring of biodiversity via meta-barcoding, Ecol. Lett., 2013, vol. 16, no. 10, pp. 1245–1257.

    Article  PubMed  Google Scholar 

  43. Kang, S. and Mills, A.L., The effect of sample size in studies of soil microbial community structure, J. Microbiol. Methods, 2006, vol. 66, no. 2, pp. 242–250.

    Article  PubMed  Google Scholar 

  44. Karimi, B., Terrat, S., Dequiedt, S., Saby, N.P., Horrigue, W., et al., Biogeography of soil bacteria and archaea across France, Sci. Adv., 2018, vol. 4, no. 7, art. ID eaat1808.

  45. Keegan, K.P., Glass, E.M., and Meyer, F., MG-RAST, a metagenomics service for analysis of microbial community structure and function, in Microbial Environmental Genomics (MEG), New York: Humana, 2016, pp. 207–233.

    Google Scholar 

  46. Knight, R., Vrbanac, A., Taylor, B.C., Aksenov, A., Callewaert, C., et al., Best practices for analysing microbiomes, Nat. Rev. Microbiol., 2018, vol. 16, no. 7, pp. 410–422.

    Article  CAS  PubMed  Google Scholar 

  47. Kuikman, P.J., van Elsas, J.D., Jansen, A.G., Burgers, S.L., and van Veen, J.A., Population dynamics and activity of bacteria and protozoa in relation to their spatial distribution in soil, Soil Biol. Biochem., 1990, vol. 22, no. 8, pp. 1063–1073.

    Article  Google Scholar 

  48. Kumar, V., AlMomin, S., Al-Aqeel, H., Al-Salameen, F., Nair, S., and Shajan, A., Metagenomic analysis of rhizosphere microflora of oil-contaminated soil planted with barley and alfalfa, PLoS One, 2018, vol. 13, no. 8, p. e0202127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Langille, M.G., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., et al., Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences, Nat. Biotechnol., 2013, vol. 31, no. 9, pp. 814–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lauber, C.L., Ramirez, K.S., Aanderud, Z., Lennon, J., and Fierer, N., Temporal variability in soil microbial communities across land-use types, ISME J., 2013, vol. 7, no. 8, pp. 1641–1650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ling, N., Chen, D., Guo, H., Wei, J., Bai, Y., et al., Differential responses of soil bacterial communities to long-term N and P inputs in a semi-arid steppe, Geoderma, 2017, vol. 292, pp. 25–33.

    Article  CAS  Google Scholar 

  52. Loeppmann, S., Semenov, M., Kuzyakov, Y., and Blagodatskaya, E., Shift from dormancy to microbial growth revealed by RNA:DNA ratio, Ecol. Indic., 2018, vol. 85, pp. 603–612.

    Article  CAS  Google Scholar 

  53. Lombard, N., Prestat, E., van Elsas, J.D., and Simonet, P., Soil-specific limitations for access and analysis of soil microbial communities by metagenomics, FEMS Microbiol. Ecol., 2011, vol. 78, no. 1, pp. 31–49.

    Article  CAS  PubMed  Google Scholar 

  54. Lorenz, P. and Eck, J., Metagenomics and industrial applications, Nat. Rev. Microbiol., 2005, vol. 3, no. 6, pp. 510–516.

    Article  CAS  PubMed  Google Scholar 

  55. Louca, S., Doebeli, M., and Parfrey, L.W., Correcting for 16S rRNA gene copy numbers in microbiome surveys remains an unsolved problem, Microbiome, 2018, vol. 6, no. 1, p. 41.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mendes, L.W., Tsai, S.M., Navarrete, A.A., de Hollander, M., van Veen, J.A., and Kuramae, E.E., Soil-borne microbiome: linking diversity to function, Microb. Ecol., 2015, vol. 70, no. 1, pp. 255–265.

    Article  CAS  PubMed  Google Scholar 

  57. Mummey, D., Holben, W., Six, J., and Stahl, P., Spatial stratification of soil bacterial populations in aggregates of diverse soils, Microb. Ecol., 2006, vol. 51, no. 3, pp. 404–411.

    Article  PubMed  Google Scholar 

  58. Murali, A., Bhargava, A., and Wright, E.S., IDTAXA: a novel approach for accurate taxonomic classification of microbiome sequences, Microbiome, 2018, vol. 6, no. 1, p. 140.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Navarrete, A.A., Soares, T., Rossetto, R., van Veen, J.A., Tsai, S.M., and Kuramae, E.E., Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility, Antonie Leeuwenhoek, 2015, vol. 108, no. 3, pp. 741–752.

    Article  CAS  PubMed  Google Scholar 

  60. Nesme, J., Achouak, W., Agathos, S.N., Bailey, M., Baldrian, P., et al., Back to the future of soil metagenomics, Front. Microbiol., 2016, vol. 7, p. 73.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Niimi, H., Mori, M., Tabata, H., Minami, H., Ueno, T., et al., A novel eukaryote-made thermostable DNA polymerase which is free from bacterial DNA contamination, J. Clin. Microbiol., 2011, vol. 49, no. 9, pp. 3316–3320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Osnovnye dostizheniya i perspektivy pochvennoi metagenomiki (General Achievements and Prospects of Soil Metagenomics), Pershina, E.V., Kutova, O.V., Kogut, B.M., and Andronov, E.E., Eds., St. Petersburg: Inform-Navigator, 2004.

    Google Scholar 

  63. Pester, M., Schleper, C., and Wagner, M., The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology, Curr. Opin. Microbiol., 2011, vol. 14, no. 3, pp. 300–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pham, V.H. and Kim, J., Cultivation of unculturable soil bacteria, Trends Biotechnol., 2012, vol. 30, no. 9, pp. 475–484.

    Article  CAS  PubMed  Google Scholar 

  65. Placella, S.A., Brodie, E.L., and Firestone, M.K., Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 27, pp. 10931–10936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Porazinska, D.L., Giblin-Davis, R.M., Esquivel, A., Powers, T.O., Sung, W.A.Y., and Thomas, W.K., Ecometagenetics confirm high tropical rainforest nematode diversity, Mol. Ecol., 2010, vol. 19, no. 24, pp. 5521–5530.

    Article  PubMed  Google Scholar 

  67. Prosser, J.I., Dispersing misconceptions and identifying opportunities for the use of ‘omics’ in soil microbial ecology, Nat. Rev. Microbiol., 2015, vol. 13, no. 7, pp. 439–446.

    Article  CAS  PubMed  Google Scholar 

  68. Ranjard, L. and Richaume, A., Quantitative and qualitative microscale distribution of bacteria in soil, Res. Microbiol., 2001, vol. 152, no. 8, pp. 707–716.

    Article  CAS  PubMed  Google Scholar 

  69. Riesenfeld, C.S., Schloss, P.D., and Handelsman, J., Metagenomics: genomic analysis of microbial communities, Annu. Rev. Genet., 2004, vol. 38, pp. 525–552.

    Article  CAS  PubMed  Google Scholar 

  70. Rutherford, P.M. and Juma, N.G., Influence of texture on habitable pore space and bacterial-protozoan populations in soil, Biol. Fertil. Soils, 1992, vol. 12, no. 4, pp. 221–227.

    Article  Google Scholar 

  71. Salter, S.J., Cox, M.J., Turek, E.M., Calus, S.T., Cookson, W.O., et al., Reagent and laboratory contamination can critically impact sequence-based microbiome analyses, BMC Biol., 2014, vol. 12, no. 1, p. 87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Schloss, P.D., Gevers, D., and Westcott, S.L., Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies, PLoS One, 2011, vol. 6, no. 12, p. e27310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schmieder, R. and Edwards, R., Insights into antibiotic resistance through metagenomic approaches, Future Microbiol., 2012, vol. 7, no. 1, pp. 73–89.

    Article  CAS  PubMed  Google Scholar 

  74. Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L., et al., Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 16, pp. 6241–6246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Semenov, M.V., Stolnikova, E.V., Ananyeva, N.D., and Ivashchenko, K.V., Structure of the microbial community in soil catena of the right bank of the Oka River, Biol. Bull. (Moscow), 2013, vol. 40, no. 3, pp. 266–274.

    Article  CAS  Google Scholar 

  76. Semenov, M., Blagodatskaya, E., Stepanov, A., and Kuzyakov, Y., DNA-based determination of soil microbial biomass in alkaline and carbonaceous soils of semi-arid climate, J. Arid Environ., 2018a, vol. 150, pp. 54–61.

    Article  Google Scholar 

  77. Semenov, M.V., Chernov, T.I., Tkhakakhova, A.K., Zhelezova, A.D., Ivanova, E.A., Kolganova, T.V., and Kutovaya, O.V., Distribution of prokaryotic communities throughout the Chernozem profiles under different land uses for over a century, Appl. Soil Ecol., 2018b, vol. 127, pp. 8–18.

    Article  Google Scholar 

  78. Senechkin, I.V., Speksnijder, A.G., Semenov, A.M., van Bruggen, A.H.C., and van Overbeek, L.S., Isolation and partial characterization of bacterial strains on low organic carbon medium from soils fertilized with different organic amendments, Microb. Ecol., 2010, vol. 60, no. 4, pp. 829–839.

    Article  PubMed  Google Scholar 

  79. Souza, R.C., Hungria, M., Cantao, M.E., Vasconcelos, A.T.R., Nogueira, M.A., and Vicente, V.A., Metagenomic analysis reveals microbial functional redundancies and specificities in a soil under different tillage and crop-management regimes, Appl. Soil Ecol., 2015, vol. 86, pp. 106–112.

    Article  Google Scholar 

  80. Staley, J.T. and Konopka, A., Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats, Annu. Rev. Microbiol., 1985, vol. 39, pp. 321–346.

    Article  CAS  PubMed  Google Scholar 

  81. Stoddard, S.F., Smith, B.J., Hein, R., Roller, B.R., and Schmidt, T.M., Rrn DB: Improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development, Nucleic Acids Res., 2015, vol. 43, no. 1, pp. D593–D598.

    Article  CAS  PubMed  Google Scholar 

  82. Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C., and Willerslev, E., Towards next-generation biodiversity assessment using DNA metabarcoding, Mol. Ecol., 2012, vol. 21, no. 8, pp. 2045–2050.

    Article  CAS  PubMed  Google Scholar 

  83. Terrat, S., Horrigue, W., Dequietd, S., Saby, N.P., Lelièvre, M., et al., Mapping and predictive variations of soil bacterial richness across France, PLoS One, 2017, vol. 12, no. 10, p. e0186766.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Tian, J., He, N., Kong, W., Deng, Y., Feng, K., et al., Deforestation decreases spatial turnover and alters the network interactions in soil bacterial communities, Soil Biol. Biochem., 2018, vol. 123, pp. 80–86.

    Article  CAS  Google Scholar 

  85. Torsvik, V. and Ovreas, L., Microbial diversity and function in soil: from genes to ecosystems, Curr. Opin. Microbiol., 2002, vol. 5, no. 3, pp. 240–245.

    Article  CAS  PubMed  Google Scholar 

  86. Torsvik, V., Goksoyr, J., and Daae, F.L., High diversity in DNA of soil bacteria, Appl. Environ. Microbiol., 1990, vol. 56, no. 3, pp. 782–787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Trevors, J.T., One gram of soil: a microbial biochemical gene library, Antonie Leeuwenhoek, 2010, vol. 97, no. 2, pp. 99–106.

    Article  CAS  PubMed  Google Scholar 

  88. Tveit, A.T., Urich, T., and Svenning, M.M., Metatranscriptomic analysis of arctic peat soil microbiota, Appl. Environ. Microbiol., 2014, vol. 80, no. 18, pp. 5761–5772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Valentine, D.L., Adaptations to energy stress dictate the ecology and evolution of the archaea, Nat. Rev. Microbiol., 2007, vol. 5, no. 4, pp. 316–323.

    Article  CAS  PubMed  Google Scholar 

  90. van der Bom, F., Nunes, I., Raymond, N.S., Hansen, V., Bonnichsen, L., et al., Long-term fertilisation form, level and duration affect the diversity, structure and functioning of soil microbial communities in the field, Soil Biol. Biochem., 2018, vol. 122, pp. 91–103.

    Article  CAS  Google Scholar 

  91. Vester, J.K., Glaring, M.A., and Stougaard, P., Improved cultivation and metagenomics as new tools for bioprospecting in cold environments, Extremophiles, 2015, vol. 19, no. 1, pp. 17–29.

    Article  CAS  PubMed  Google Scholar 

  92. Vetrovsky, T. and Baldrian, P., The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses, PLoS One, 2013, vol. 8, no. 2, p. e57923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vogel, T.M., Simonet, P., Jansson, J.K., Hirsch, P.R., Tiedje, J.M., et al., TerraGenome: a consortium for the sequencing of a soil metagenome, Nat. Rev. Microbiol., 2009, vol. 7, p. 252.

    Article  CAS  Google Scholar 

  94. Will, C., Thürmer, A., Wollherr, A., Nacke, H., Herold, N., et al., Horizon-specific bacterial community composition of German grassland soils, as revealed by pyrosequencing-based analysis of 16S rRNA genes, Appl. Environ. Microbiol., 2010, vol. 76, no. 20, pp. 6751–6759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wilson, I.G., Inhibition and facilitation of nucleic acid amplification, Appl. Environ. Microbiol., 1997, vol. 63, no. 10, pp. 3741–3751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wolinska, A., Kuzniar, A., Zielenkiewicz, U., Banach, A., and Blaszczyk, M., Indicators of arable soils fatigue— Bacterial families and genera: a metagenomic approach, Ecol. Indic., 2018, vol. 93, pp. 490–500.

    Article  Google Scholar 

  97. Wright, D.A., Killham, K., Glover, L.A., and Prosser, J.I., The effect of location in soil on protozoal grazing of a genetically modified bacterial inoculum, Geoderma, 1993, vol. 56, pp. 633–640.

    Article  Google Scholar 

  98. Xu, J., Fungal DNA barcoding, Genome, 2016, vol. 59, no. 11, pp. 913–932.

    Article  CAS  PubMed  Google Scholar 

  99. Zifcakova, L., Vetrovsky, T., Lombard, V., Henrissat, B., Howe, A., and Baldrian, P., Feed in summer, rest in winter: microbial carbon utilization in forest topsoil, Microbiome, 2017, vol. 5, no. 1, p. 122.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zvyagintsev, D.G., Bab’eva, I.P., and Zenova, G.M., Biologiya pochv (Soil Biology), Moscow: Mosk. Gos. Univ., 2005.

Download references

ACKNOWLEDGEMENTS

The author thanks Academician V.V. Rozhnov and O.L. Makarova for the opportunity to present this material at the XXV Sukachev Lectures, “Metagenomics and metabarcoding in ecological studies: a methodological breakthrough?!”.

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-04-00315.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Semenov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by M. Bibov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, M.V. Metabarcoding and Metagenomics in Soil Ecology Research: Achievements, Challenges, and Prospects. Biol Bull Rev 11, 40–53 (2021). https://doi.org/10.1134/S2079086421010084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086421010084

Navigation