Skip to main content
Log in

Spatial Stratification of Soil Bacterial Populations in Aggregates of Diverse Soils

  • Published:
Microbial Ecology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

References

  1. Axelrood, PE, Chow, ML, Radomski, CC, McDermott, JM, Davies, J (2002) Molecular characterization of bacterial diversity from British Columbia forest soils subjected o disturbance. Can J Microbiol 48: 655–674

    Article  PubMed  CAS  Google Scholar 

  2. Barois, I, Villemin, G, Lavelle, P (1993) Transformation of the soil structure through Pontoscolex coretrhrurus (Oligochaeta) intestinal tract. Geoderma 56: 57–66

    Article  Google Scholar 

  3. Chenu, C, Hassink, J, Bloem, J (2001) Short-term changes in the spatial distribution of microorganisms in soil aggregates as affected by glucose addition. Biol Fertil Soils 34: 349–356

    Article  CAS  Google Scholar 

  4. Chotte, JL, Jocteur, Monrozier, L, Villemin, G, Albrecht, A (1993) Soil microhabitat and the importance of fractionation method. In: Mulongoy, K, Merckx, R (Eds.) Soil Organic Matter Dynamics and Sustainability of Tropical Agriculture. Wiley, Leuwen

    Google Scholar 

  5. Darrell, DP, Shu-Mei, LI, Spadoni, CM, Drake, GR, Balkwill, DL, Fredrickson, JK, Brockman, FJ (1997) A molecular comparison of culturable aerobic heterotrophic bacteria and 16S rDNA clones derived from a deep substance sediment. FEMS Microbiol Ecol 23: 131–144

    Article  Google Scholar 

  6. Dechesne, A, Pallud, C, Debouzie, D, Flandrois, JP, Vogel, TM, Gaudet, JP, Grundman, GL (2004) A novel method for characterizing the microscale 3D spatial distribution of bacteria in soil. Soil Biol Biochem 35: 1537–1546

    Article  CAS  Google Scholar 

  7. Drazzkiewicz, M (1994) Distribution of microorganisms in soil aggregates: effect of aggregate size. Folia Microbiol 39: 276

    Article  Google Scholar 

  8. Dunbar, J, Takala, S, Barns, SM, Davis, JA, Kuske, CR (1999) Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl Environ Microbiol 64: 1662–1669

    Google Scholar 

  9. Felske, A, de Vos, WM, Akkermans, ADL (2000) Spatial distribution of 16S rRNA levels from uncultured acidobacteria in soil. Lett Appl Microbiol 31: 118–122

    Article  PubMed  CAS  Google Scholar 

  10. Furlong, MA, Singleton, DR, Coleman, DC, Whitman, WB (2002) Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Appl Environ Microbiol 68: 1265–1279

    Article  PubMed  CAS  Google Scholar 

  11. Gremion, F, Chatzinotas, A, Harms, H (2003) Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environ Microbiol 4: 896–907

    Article  CAS  Google Scholar 

  12. Griffiths, RI, Whiteley, AS, O’Donnell, AG, Bailey, MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66: 5488–5491

    Article  PubMed  CAS  Google Scholar 

  13. Grundmann, GL, Dechesne, A, Bartoli, F, Flandrois, JP, Chasse, JL, Kizungu, R (2001) Spatial modeling of nitrifier microhabitats in soil. Soil Sci Soc Am J 65: 1709–1716

    Article  CAS  Google Scholar 

  14. Grundmann, GL (2004) Spatial scales of soil bacterial diversity—the size of a clone. FEMS Microbiol Ecol 48: 119–127

    Article  CAS  PubMed  Google Scholar 

  15. Gupta, VVRS, Germida, JJ (1988) Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation. Soil Biol Biochem 20: 777–786

    Article  CAS  Google Scholar 

  16. Harris, PJ (1994) Consequences of the spatial distribution of microbial communities in soil. In: Ritz, K, Dighton, J, Giller, KE (Eds.) Beyond the Biomass. Compositional and Functional Analysis of Microbial Communities. Wiley, Chichester, pp 239–246

    Google Scholar 

  17. Hattori, T, Hattori, R (1976) The physical environment in soil microbiology: an attempt to extend principles of microbiology to soil microorganisms. CRC Crit Rev 4: 423–461

    Article  CAS  Google Scholar 

  18. Hattori, T (1988) Soil aggregates as microhabitats of microorganisms. Rep Inst Agric Res Tohoku Univ 37: 23–26

    Google Scholar 

  19. Hendrix, PF (1997) Long-term patterns of plant production and soil carbon dynamics in a Georgia piedmont agroecosystem. In: Paul, EA, Paustian, K, Elliott, ET, Cole, CV (Eds.) Soil Organic Matter in Temperate Agroecosystems: Long Term Experiments in North America. CRC Press, New York

    Google Scholar 

  20. Holben, WE, Feris, KP, Kettunen, A, Apajalahti, JHA (2004) GC fractionation enhances microbial community diversity assessment and detection of minority populations of bacteria by denaturing gradient gel electrophoresis. Appl Environ Microbiol 70: 2263–2270

    Article  PubMed  CAS  Google Scholar 

  21. Holmes, AJ, Bowyer, J, Holley, MP, O'Donoghue, M, Montgomery, M, Gillings, MR (2000) Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils. FEMS Microbiol Ecol 33: 111–120

    Article  PubMed  CAS  Google Scholar 

  22. Jastrow, JD, Boutton, TW, Miller, RM (1996) Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance. Soil Sci Soc Am J 60: 801–807

    Article  CAS  Google Scholar 

  23. Joseph, SJ, Hugenholtz, P, Sangwan, P, Osborne, CA, Janssen, PH (2003) Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl Environ Microbiol 69: 7210–7215

    Article  PubMed  CAS  Google Scholar 

  24. Killman, K, Amato, M, Ladd, JN (1992) Effect of substrate location in soil and soil pore water regime on carbon turnover. Soil Biol Biochem 25: 57–62

    Google Scholar 

  25. Klironomos, JN, Rillig, MC, Allen, MF (1999) Designing belowground field experiments with the help of semi-variance and power analyses. Appl Soil Ecol 12: 227–238

    Article  Google Scholar 

  26. Kuske, CR, Barnes, SM, Busch, JD (1997) Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographical regions. Appl Environ Microbiol 63: 3614–3621

    PubMed  CAS  Google Scholar 

  27. Lane, DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt, E, Goodfellow, M (Eds.) Nucleic Acid Techniques in Bacterial Systematics. Wiley, New York, NY, pp 115–175

    Google Scholar 

  28. Lensi, R, Clays-Josserand, A, Monrozier, LJ (1995) Denitrifiers and denitrifying activity in size fractions of a mollisol under permanent pasture and continuous cultivation. Soil Biol Biochem 27: 61–69

    Article  CAS  Google Scholar 

  29. Levin, S (1992) The problem of pattern and scale in ecology. Ecology 76: 1943–1967

    Article  Google Scholar 

  30. Lyon, DJ, Monz, CA, Brown, RE, Metherell, AK (1997) Organic matter changes over two decades of winter wheat–fallow cropping in western Nebraska. In: Paul, EA, Paustian, K, Elliott, ET, Cole, CV (Eds.) Soil Organic Matter in Temperate Agroecosystems. CRC Press, New York

    Google Scholar 

  31. Ludwig, W, Strunk, O, Westram, R, Richter, L, Meier, H, Yadhukumar, Buchner, A, Lai, T, Steppi, S, Jobb, G, Förster, W, Brettske, I, Gerber, S, Ginhart, AW, Gross, O, Grumann, S, Hermann, S, Jost, R, König, A, Liss, T, Lüßmann, R, May, M, Nonhoff, B, Reichel, B, Strehlow, R, Stamatakis, A, Stuckmann, N, Vilbig, A, Lenke, M, Ludwig, T, Bode, A, Schleifer, KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363–1371

    Article  PubMed  CAS  Google Scholar 

  32. Maidak, BL, Cole, JR, Lilburn, TG, Parker, CT, Saxman, PR, Farris, RJ, Garrity, JM, Olsen, GJ, Schmidt, TM, Tiedje, JM (2001) The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29: 173–174

    Article  PubMed  CAS  Google Scholar 

  33. McCaig, AE, Glover, LA, Prosser, JI (1999) Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Appl Environ Microbiol 65: 1721–1730

    PubMed  CAS  Google Scholar 

  34. Moffett, BF, Nicholson, FA, Uwakwe, NC, Chambers, BJ, Harris, JA, Hill, TCJ (2003) Zinc contamination decreases the bacterial diversity of agricultural soil. FEMS Microbiol Ecol 43: 13–19

    Article  CAS  PubMed  Google Scholar 

  35. Mummey, DL, Stahl, PD (2003) Candidate division BD: phylogeny, distribution and abundance in soil ecosystems. Syst Appl Microbiol 26: 228–235

    Article  PubMed  Google Scholar 

  36. Mummey, DL, Stahl, PD (2004) Analysis of soil whole- and inner-microaggregate bacterial communities. Microb Ecol 48: 41–50

    Article  PubMed  CAS  Google Scholar 

  37. Nishio, N, Furusaka, C (1970) The distribution of nitrifying bacteria in soil aggregates. Soil Sci Plant Nutr 16: 24–29

    Google Scholar 

  38. Nogales, BE, Moore, RB, Abraham, WR, Timmis, KN (1999) Identification of the metabolically active members of a bacterial community in a polychlorinated biphenyl-polluted moorland soil. Environ Microbiol 5: 199–212

    Article  Google Scholar 

  39. Oades, JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76: 319–337

    Article  CAS  Google Scholar 

  40. Oades, JM, Waters, AG (1991) Aggregate hierarchy in soils. Aust J Soil Res 29: 815–828

    Article  Google Scholar 

  41. O'Donnell, AG, Godfellow, M, Hawksworth, DL (1995) Theoretical and practical aspects of the quantification of biodiversity among microorganisms. In: Hawksworth, DL (Ed.) Biodiversity, Measurement and Estimation. The Royal Society, pp 65–73

  42. Pallud, C, Dechesne, A, Gaudet, JP, Debouzie, D, Grundmann, GL (2004) Modification of 2,4-dichlorophenoxyacetic acid degrader microhabitats during growth in soil columns. Appl Environ Microbiol 70: 2709–2716

    Article  PubMed  CAS  Google Scholar 

  43. Ranjard, L, Richaume, A, Jocteur Monrozier, L, Nazaret, S (1997) Response of soil bacteria to Hg(II) in relation to soil characteristics and cell location. FEMS Microbiol Ecol 24: 321–331

    Article  CAS  Google Scholar 

  44. Ranjard, L, Nazaret, S, Gourbiere, F, Thioulouse, J, Linet, P, Richaume, A (2000) A soil microscale study to reveal the heterogeneity of Hg(II) impact on indigenous bacteria by quantification of adapted phenotypes and analysis of community DNA fingerprints. FEMS Microbiol Ecol 31: 107–115

    Article  PubMed  CAS  Google Scholar 

  45. Ranjard, L, Richaume, A (2001) Quantitative and qualitative microscale distribution of bacteria in soil. Res Microbiol 152: 707–716

    Article  PubMed  CAS  Google Scholar 

  46. Rheims, H, Felske, A, Seufert, S, Stackebrandt, E (1999) Molecular monitoring of an uncultured group of Actinobacteria in two terrestrial ecosystems. J Microbiol Methods 36: 65–75

    Article  PubMed  CAS  Google Scholar 

  47. Sessitsch, A, Weilharter, A, Gerzabek, MH, Kirchmann, H, Kandeler, E (2001) Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl Environ Microbiol 67: 4215–4224

    Article  PubMed  CAS  Google Scholar 

  48. Shipitalo, MJ, Protz, R (1988) Factors influencing the dispersibility of clay in worm casts. Soil Sci Soc Am J 52: 764–769

    Article  Google Scholar 

  49. Skjemstad, Q4 JO, Janik, LJ, Head, MJ, McClure, SG (1993) High-energy ultraviolet photo-oxidation: a novel technique for studying physically protected organic matter in clay- and silt-sized aggregates. J Soil Sci 44: 485–499

    Article  CAS  Google Scholar 

  50. Singleton, DR, Furlong, MA, Peacock, AD, White, DC, Coleman, WB, Whitman, WB (2003) Solirubrobacter pauli gen. nov., sp. nov., a mesophilic bacterium within the Rubrobacteridae related to common soil clones. Int J Syst Evol Microbiol 53: 485–490

    Article  PubMed  Google Scholar 

  51. Six, J, Elliott, ET, Paustian, K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32: 2099–2103

    Article  CAS  Google Scholar 

  52. Six, J, Conant, RT, Paul, EA, Paustian, K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241: 155–176

    Article  CAS  Google Scholar 

  53. Six, J, Feller, C, Denef, K, Ogle, SM, de Moraes Sa, JC, Albrecht, A (2002) Organic matter, biota and aggregation in temperate and tropical soils—effects of no-tillage. Agron Agric Environ 22: 755–775

    Google Scholar 

  54. Stahl, DA, Tiedje, JM (2002) Microbial ecology and genomics: a crossroads of opportunity. An American Academy of Microbiology Critical Issues Colloquia Report. American Academy of Microbiology, Washington DC

    Google Scholar 

  55. Tisdall, JM, Oades, JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33: 141–163

    Article  CAS  Google Scholar 

  56. Van Gestral, M, Merckx, R, Vlassak, K (1996) Spatial distribution of microbial biomass in microaggregates of a silty-loam soil and their relation with the resistance of microorganisms to soil drying. Soil Biol Biochem 28: 503–510

    Article  Google Scholar 

  57. Vargas, R, Hattori, T (1991) The distribution of protozoa within soil aggregates. J Gen Appl Microbiol 37: 515–518

    Article  Google Scholar 

  58. Wright, DA, Killham, K, Glover, LA, Prosser, JI (1995) Role of pore-size location in determining bacterial-activity during predation by protozoa in soil. Appl Environ Microbiol 61: 3537–3543

    PubMed  CAS  Google Scholar 

  59. Young, IM, Crawford, JW (2004) Interactions and self-organization in the soil–microbe complex. Science 304: 1634–1637

    Article  PubMed  CAS  Google Scholar 

  60. Zhang, H, Sekiguchi, Y, Hanada, S, Hugenholtz, P, Kim, H, Kamagata, Y, Nakamura, K (2003) Gemmatimonas aurantiaca gen. nov., sp. nov., a gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultivated representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol 53: 1155–1163

    Article  PubMed  CAS  Google Scholar 

  61. Zhou, J, Xia, B, Huang, H, Treves, DS, Hauser, LJ, Mural, RJ, Palumbo, AV, Tiedje, JM (2003) Bacterial phylogenetic diversity and a novel candidate division of two humid region, sandy surface soils. Soil Biol Biochem 35: 915–924

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Karolien Denef and Paul F. Hendrix for providing soil samples and valuable insights into site characteristics. This work was funded by USDA-NRI CSREES grant #2003-35107-13645 (to Daniel Mummey).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Mummey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mummey, D., Holben, W., Six, J. et al. Spatial Stratification of Soil Bacterial Populations in Aggregates of Diverse Soils. Microb Ecol 51, 404–411 (2006). https://doi.org/10.1007/s00248-006-9020-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9020-5

Keywords

Navigation