Skip to main content
Log in

One gram of soil: a microbial biochemical gene library

  • Perspective
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

One gram of soil is an immense biochemical gene library producing diverse genetic instructions, which have been present for almost 4 billion years on the Earth. There is sufficient DNA in 1 g of soil to extend 1,598 km. However, this is certainly an underestimate for fertile soils. Can the amount of genetic information contained in one g of soil be accurately estimated? The answer is not always definitive as the estimate depends on the particular g of soil being researched and the methods for DNA extraction, purification and quantification. Moreover, there is no such entity as a typical or average g of soil. Extraction of DNA from soil samples is never 100% efficient and can vary from a few μg to almost 200 μg DNA per g dry weight soil. However, estimates can be made that lead to a better understanding of the immense biochemical gene library and gene expression (combined transcription and translation) in microorganisms within a single g of soil. Accurate estimates of genes expressed in a single g of soil under a multitude of changing, environmental, conditions still requires considerable research. In this article, soil as a biochemical gene library, gene expression, and the minimal number of genes for the first bacteria in the environment will be examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) Molecular biology of the cell, 4th edn. Garland Publishing, USA

    Google Scholar 

  • Bach HJ, Lee H, Trevors JT, Munch JC (1999) Identification of bacterial soil proteases and specific detection of the corresponding genes by PCR and hybridization. Appl Environ Microbiol 65:3226–3228

    CAS  PubMed  Google Scholar 

  • Dandie CE, Miller MN, Burton DL, Zebarth BJ, Trevors JT, Goyer C (2007) Nitric-oxide reductase-targeted Real-Time PCR quantification of denitrifier populations in soil. Appl Environ Microbiol 73:4250–4258

    Article  CAS  PubMed  Google Scholar 

  • Drlica K, Riley M (eds) (1990) The bacterial chromosome. ASM Press, USA

    Google Scholar 

  • England LS, Vincent ML, Trevors JT, Holmes SB (2004) Extraction, detection and persistence of extracellular DNA in forest litter microcosms. Mol Cell Probes 18:313–319

    Article  CAS  PubMed  Google Scholar 

  • Ghosh D, Roy K, Willliamson KE, White DC, Wommack KE, Sublette KI, Radosevich M (2008) Prevalence of lysogency among soil bacteria and presence of 16S rRNA and trzN Genes in viral-community DNA. Appl Environ Microbiol 74:495–502

    Article  CAS  PubMed  Google Scholar 

  • Gulden RH, Lerat S, Hart M, Powell J, Trevors JT, Pauls KP, Klironomos JN, Swanton CJ (2005) Quantification of transgenic plant DNA in leachate water: real-time PCR analysis. J Agr Food Chem 53:5858–5865

    Article  CAS  Google Scholar 

  • Hurt RA, Qiu X, Wu L, Roh Y, Palumbo AV, Tiedje JM, Zhou Z (2001) Simultaneous recovery of RNA and DNA from soils and sediments. Appl Environ Microbiol 67:4495–4503

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson CA, Peterson SN, Gill SR, Cline RT, White O, Fraser CM, Smith HO, Venter JC (1999) Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286:2165–2169

    Article  Google Scholar 

  • Islas S, Becerra A, Luigi Luisi P, Lazcano A (2004) Comparative genomics and the gene complement of a minimal cell. Orig Life Evol Biosph 34:243–256

    Article  CAS  PubMed  Google Scholar 

  • Kirk J, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Meths 56(2):169–188

    Article  Google Scholar 

  • Koonin EV (2000) How many genes can make a cell: the minimal-gene set concept. Annu Rev Genomics Hum Genet 1:9–116

    Article  Google Scholar 

  • Kuske CR, Banton KL, Adorada DL, Stark PC, Hill KK, Jackson PI (1998) Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil. Appl Environ Microbiol 64:2463–2472

    CAS  PubMed  Google Scholar 

  • Lerat S, England L, Klironomos J, Pauls P, Swanton C, Trevors JT (2005) Real-time polymerase chain reaction detection of the transgenes for Roundup Ready corn and soybean in soil samples. J Agric Food Chem 53:1337–1342

    Article  CAS  PubMed  Google Scholar 

  • Leroy S, Duperray C, Morand S (2003) Flow cytometry for parasite nematode genome size measurement. Mol Biochem Parasitol 128:91–93

    Article  CAS  PubMed  Google Scholar 

  • Levy-Booth DJ, Campbell RG, Gulden RH, Hart MM, Powell JR, Klironomos JN, Pauls KP, Swanton CJ, Trevors JT, Dunfield KE (2007) The DNA cycle in soil: free DNA in the soil environment. Soil Biol Biochem 39:2977–2991

    Article  CAS  Google Scholar 

  • Luis PH, Kellner H, Martin F, Buscot F (2005) A molecular method to evaluate Basidiomycete laccase gene expression in forest soils. Geoderma 128:18–27

    Article  CAS  Google Scholar 

  • Maier RM, Pepper IL, Gerba CP (2000) Environmental microbiology. Academic Press, USA

    Google Scholar 

  • Metting FB (1993) Structure and physiological ecology of soil microbial communities. In: Metting FB (ed) Soil microbial ecology: applications in agricultural and environmental management. Marcel Dekker, USA, pp 3–25

    Google Scholar 

  • Miller DN, Bryant JE, Madsen EI, Ghiore WC (1999) Evaluation and optimization of dNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65:4715–4724

    CAS  PubMed  Google Scholar 

  • Ogunseitan OA (2006) Soil proteomics: extraction and analysis of proteins from soils. In: Nannipieri P, Smalla K (eds) Soil biology vol 8, nucleic acids and proteins in soil. Springer, Berlin, pp 95–115

    Chapter  Google Scholar 

  • Poretsky RS, Bano N, Buchan A, LeCleir G, Kleikemper J, Pickering M, Pate WM, Moran MA, Hollibaugh JT (2005) Analysis of microbial gene transcripts in environmental samples. Appl Environ Microbiol 71:4121–4126

    Article  CAS  PubMed  Google Scholar 

  • Porteous LA, Armstrong JL (1991) Recovery of bulk DNA from soil by a rapid, small-scale extraction method. Curr Microbiol 22:345–348

    Article  CAS  Google Scholar 

  • Raes J, Korbel JO, Lercher MJ, von Mering C, Bork P (2007) Prediction of effective genome size in metagenomic samples. Genome Biol 8:R10

    Article  PubMed  Google Scholar 

  • Reyes-Lamothe R, Wang X, Sherratt D (2008) Escherichia coli and its chromosome. Trends Microbiol 16:238–0245

    Article  CAS  PubMed  Google Scholar 

  • Roche Applied Science Lab FAQS 2nd edn. Roche Diagnostics GmbH, Nonnenwald 2, Germany

  • Sagova-Mareckova L, Cermak L, Novotna J, Plhackova K, Forstova J, Kopecky J (2008) Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Appl Environ Microbiol 74:2902–2907

    Article  CAS  PubMed  Google Scholar 

  • Saleh-Lakha S, Miller M, Campbell R, Schneider K, Elahimanesh P, Hart MM, Trevors JT (2005) Microbial gene expression in soil: methods, applications and limitations. J Microbiol Meths 63(1):1–19

    Article  CAS  Google Scholar 

  • Saleh-Lakha S, Shannon KE, Henderson SL, Goyer C, Trevors JT, Zebarth BJ, Burton DL (2008) Nitric oxide reductase gene expression and nitrous oxide production in nitrate-grown Pseudomonas mandelii. Appl Environ Microbiol 74:6876–6879

    Article  CAS  PubMed  Google Scholar 

  • Saleh-Lakha S, Shannon KE, Henderson SL, Goyer C, Trevors JT, Zebarth BJ, Burton DL (2009) Effect of pH and temperature on denitrification genes expression and nitrous oxide production in pure cultures of Pseudomonas mandelii. Appl Environ Microbiol 75:5082–5087

    Article  CAS  PubMed  Google Scholar 

  • Smit E, van Elsas JD (1990) Determination of plasmid transfer frequency in soil; consequences of bacterial mating on selective agar media. Curr Microbiol 21:151–157

    Article  CAS  Google Scholar 

  • Sogaard-Anderson L (2008) Growth and development-prokaryotes. Curr Opin Microbiol 11:532–534

    Article  Google Scholar 

  • Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (2005) Principles and applications of soil microbiology, 2nd edn. Pearson, USA, p 640

    Google Scholar 

  • Tao HC, Bausch C, Richmond C, Blattner FR, Conway T (1999) Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J Bacteriol 181:6425–6440

    CAS  PubMed  Google Scholar 

  • Tepler D (2008) The origin of life, panspermia and a proposal to seed the universe. Plant Sci 175:756–760

    Article  Google Scholar 

  • Torsvik VL (1980) Isolation of bacterial DNA from soil. Soil Biol Biochem 12:15–21

    Article  CAS  Google Scholar 

  • Torsvik VL, Goksoyr J (1978) Determination of bacterial DNA in soil. Soil Biol Biochem 10:7–12

    Article  Google Scholar 

  • Torsvik VL, Goksoyr J, Dane FL (1990) High diversity in DNA of soil bacteria. Appl Environ 56:782–787

    CAS  Google Scholar 

  • Trevors JT (1992) Extraction of DNA from soil: a review. Microb Releases 1:3–9

    CAS  Google Scholar 

  • Trevors JT (1996a) Genome size in bacteria. Antonie van Leeuwenhoek 69:293–303

    Article  CAS  PubMed  Google Scholar 

  • Trevors JT (1996b) Nucleic acids in the environment. Curr Opin Biotechnol 7(3):331–336

    Article  CAS  PubMed  Google Scholar 

  • Trevors JT (2004) Evolution of cell division in bacteria. Theor Biosci 123(1):3–15

    Article  CAS  Google Scholar 

  • Trevors JT, Cook S (1992) A comparison of plating media and diluents for enumeration of aerobic bacteria in a loam soil. J Microbiol Meths 14:271–275

    Article  Google Scholar 

  • Trevors JT, Pollack GH (2005) The origin of life in a gel-like environment. Prog Biophys Mol Biol 89:1–8

    Article  CAS  PubMed  Google Scholar 

  • Trevors JT, van Elsas JD (eds) (1995) Nucleic acids in the environment: methods and applications. Springer, Heidelberg

    Google Scholar 

  • Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen KN, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2007) Comparative metagenomics of microbial communities. Science 308:554–557

    Article  Google Scholar 

  • Tsai Y-L, Olson BH (1991) Rapid method for direct extraction of DNA from soils and sediments. Appl Environ Microbiol 57:1070–1074

    CAS  PubMed  Google Scholar 

  • Tsai YL, Park MJ, Olson BH (1991) Rapid method for direct extraction of mRNA from seeded soils. Appl Environ Microbiol 57:765–768

    CAS  PubMed  Google Scholar 

  • van Elsas JD, Turner S, Trevors JT (2006) Bacterial conjugation in soil. In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil. Springer, Berlin, pp 331–354

    Chapter  Google Scholar 

  • van Elsas JD, Jansson JK, Trevors JT (eds) (2007) Modern soil microbiology II. CRC Press-Taylor and Francis, Boca Raton, p 646

    Google Scholar 

  • Wegrzyn G (2001) The minimal genome paradox. J Appl Genet 42:385–392

    CAS  PubMed  Google Scholar 

  • Xu L, Cheng H, Hu X, Zhang R, Zhang Z, Luo ZW (2006) Average gene length is highly conserved in prokaryotes and eukaryotes and diverges only between the two kingdoms. Mol Biol Evol 23:1107–1108

    Article  CAS  PubMed  Google Scholar 

  • Zwolinski MD (2007) DNA sequencing:strategies for soil microbiology. SSSAJ 71:592–600

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. Trevors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trevors, J.T. One gram of soil: a microbial biochemical gene library. Antonie van Leeuwenhoek 97, 99–106 (2010). https://doi.org/10.1007/s10482-009-9397-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-009-9397-5

Keywords

Navigation