Skip to main content
Log in

Promoters of plant genes responsive to pathogen invasion

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

Gene networks controlling the plant resistance to different phytopathogens are rather complex; hundreds of genes can be involved in them. Infection causes considerable changes at molecular-genetic, biochemical, physiological, and morphological levels both locally (in the place of invasion) and systemically. The reconstruction of gene networks that are responsible for plant defense against pathogenic bacteria, fungi, and viruses is required for the elucidation of the underlying molecular mechanisms as well as for the development of new approaches to crop improvement. The transcriptional activity of genes involved in the defense mechanisms usually increases in response to the infection; therefore, the characteristics of their promoters is an important source of information for the detection of transcription factors that control their activity and for the search for new genes involved in the pathogen response. The data on promoters are required for the creation of plants that are resistant to phytopathogens by gene engineering techniques. The data on promoters of pathogen-sensitive genes with an experimentally verified expression pattern annotated in the TransGene Promoters (TGP) database are presented in the article. The TGP database can be used as a source of information for interpretation of transcriptome data and when planning genetically engineered experiments directed towards increasing plant resistance to pathogens of different origins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abebe, T., Skadsen, R., Patel, M., and Kaeppler, H., The Lem2 gene promoter of barley directs cell- and development-specific expression of gfp in transgenic plants, Plant Biotechnol. J., 2006, vol. 4, pp. 35–44.

    Article  CAS  PubMed  Google Scholar 

  • Altpeter, F., Varshney, A., Abderhalden, O., et al., Stable expression of a defense-related gene in wheat epidermis under transcriptional control of a novel promoter confers pathogen resistance, Plant. Mol. Biol., 2005, vol. 57, pp. 271–283.

    Article  CAS  PubMed  Google Scholar 

  • Baebler, Š., Witek, K., Petek, M., et al., Salicylic acid is an indispensable component of the Ny-1 resistance-genemediated response against potato virus Y infection in potato, J. Exp. Bot., 2014, vol. 65, pp. 1095–1109.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Balasubramanian, V., Vashisht, D., Cletus, J., and Sakthivel, N., Plant-1,3-glucanases: their biological functions and transgenic expression against phytopatho- genic fungi, Biotechnol. Lett., 2012, vol. 34, pp. 1983–1990.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee, J., Sahoo, D.K., Dey, N., et al., An intergenic region shared byAt4g35985 and At4g35987 in Arabi- dopsis thaliana is a tissue specific and stress inducible bidirectional promoter analyzed in transgenic Arabidopsis and tobacco plants, PLoS One, 2013, vol. 8, p. e79622.

    Article  PubMed Central  PubMed  Google Scholar 

  • Barbosa-Mendes, J.M., de Assis, Alves., Mourao, FilhoF., Filho, A.B., et al., Genetic transformation of Citrus sinensis cv. Hamlin with hrpN gene from Erwinia amylo- vora and evaluation of the transgenic lines for resistance to citrus canker, Sci. Hortic., 2009, vol. 122, pp. 109–115.

    Article  CAS  Google Scholar 

  • Bolivar, J.C., Machens, F., Brill, Y., et al., ‘In silico expression analysis’, a novel pathoplant web tool to identify abiotic and biotic stress conditions associated with specific cis-regulatory sequences, Database (Oxford), 2014.

    Google Scholar 

  • Castresana, C., de Carvalho, F., Gheysen, G., et al., Tissuespecific and pathogen-induced regulation of a Nicotiana plumbaginifolia beta-1,3-glucanase gene, Plant Cell, 1990, vol. 2, pp. 1131–1143.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi, J.J., Klosterman, S.J., and Hadwiger, L.A., A comparison of the effects of DNA-damaging agents and biotic elicitors on the induction of plant defense genes, nuclear distortion, and cell death, Plant Physiol., 2001, vol. 125, pp. 752–762.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi, J.J., Klosterman, S.J., and Hadwiger, L.A., A promoter from pea gene DRR206 is suitable to regulate an elicitor-coding gene and develop disease resistance, Phytopathology, 2004, vol. 94, pp. 651–660.

    Article  CAS  PubMed  Google Scholar 

  • Evrard, A., Meynard, D., Guiderdoni, E., et al., The promoter of the wheat puroindoline-a gene (PinA) exhibits a more complex pattern of activity than that of the PinB gene and is induced by wounding and pathogen attack in rice, Planta, 2007, vol. 225, pp. 287–300.

    Article  CAS  PubMed  Google Scholar 

  • Filipenko, E.A., Kochetov, A.V., Kanayama, Y., et al., PRproteins with ribonuclease activity and plant resistance against pathogenic fungi, Russ. J. Genet. Appl. Res., 2013, vol. 3, pp. 474–480.

    Article  Google Scholar 

  • Grant, M.R., Kazan, K., and Manners, J.M., Exploiting pathogens’ tricks of the trade for engineering of plant disease resistance: challenges and opportunities, Microb. Biotechnol., 2013, vol. 6, pp. 212–222.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ghosh-Dasgupta, M., George, B.S., Bhatia, A., and Sidhu, O.P., Characterization of Withania somnifera leaf transcriptome and expression analysis of pathogenesis-related genes during salicylic acid signaling, PLoS One, 2014, vol. 9, p. e94803.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hahn, K. and Strittmatter, G., Pathogen-defense gene prp1-1 from potato encodes an auxin-responsive glutathione S-transferase, Eur. J. Biochem., 1994, vol. 226, pp. 619–626.

    Article  CAS  PubMed  Google Scholar 

  • Hennig, J., Dewey, R.E., Cutt, J.R., and Klessig, D.F., Pathogen, salicylic acid and developmental dependent expression of a beta-1,3-glucanase/gus gene fusion in transgenic tobacco plants, Plant J., 1993, vol. 4, pp. 481–493.

    Article  CAS  PubMed  Google Scholar 

  • Himmelbach, A., Zierold, U., Hensel, G., et al., A set of modular binary vectors for transformation of cereals, Plant Physiol., 2007, vol. 145, pp. 1192–1200.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hong, J.K., Lee, S.C., and Hwang, B.K., Activation of pepper basic PR-1 gene promoter during defense signaling to pathogen, abiotic and environmental stresses, Gene, 2005, vol. 356, pp. 169–180.

    Article  CAS  PubMed  Google Scholar 

  • Hong, J.K. and Hwang, B.K., Promoter activation of pepper class II basic chitinase gene, CAChi2, and enhanced bacterial disease resistance and osmotic stress tolerance in the CAChi2-overexpressing Arabidopsis, Planta, 2006, vol. 223, pp. 433–448.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y. and McBeath, J.H., Bacterial induced activation of an Arabidopsis phenylalanine ammonia-lyase promoter in transgenic tobacco plants, Plant Sci., 1994, vol. 98, pp. 25–35.

    Article  CAS  Google Scholar 

  • Jung, H.W., Lim, C.W., and Hwang, B.K., Isolation and functional analysis of a pepper lipid transfer protein iii (CALTPIII) gene promoter during signaling to pathogen, abiotic and environmental stresses, Plant Sci., 2006, vol. 170, pp. 258–266.

    Article  CAS  Google Scholar 

  • Kesanakurti, D., Kolattukudy, P.E., and Kirti, P.B., Fruitspecific over expression of wound-induced tap1 under E8 promoter in tomato confers resistance to fungal pathogens at ripening stage, Physiol. Plant., 2012, vol. 146, pp. 136–148.

    Article  CAS  PubMed  Google Scholar 

  • Kirsch, C., Logemann, E., Lippok, B., Schmelzer, E., and Hahlbrock, K., A highly specific pathogen-responsive promoter element from the immediate-early activated CMPG1 gene in Petroselinum crispum, Plant J., 2001, vol. 26, pp. 217–227.

    Article  CAS  PubMed  Google Scholar 

  • Koschmann, J., Machens, F., Becker, M., et al., Integration of bioinformatics and synthetic promoters leads to the discovery of novel elicitor-responsive cis-regulatory sequences in Arabidopsis, Plant Physiol., 2012, vol. 160, pp. 178–191.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kovalchuk, N., Li, M., Wittek, F., et al., Defensin promoters as potential tools for engineering disease resistance in cereal grains, Plant Biotechnol. J., 2010, vol. 8, pp. 47–64.

    Article  CAS  PubMed  Google Scholar 

  • Kovalchuk, N., Wu, W., Eini, O., et al., The scutellar vascular bundle-specific promoter of the wheat HD-ZIP IV transcription factor shows similar spatial and temporal activity in transgenic wheat, barley and rice, Plant Biotechnol. J, 2012, vol. 10, pp. 43–53.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S.C. and Hwang, B.K., Identification and deletion analysis of the promoter of the pepper SAR8.2 gene activated by bacterial infection and abiotic stresses, Planta, 2006, vol. 224, pp. 255–267.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S.C., Kim, D.S., Kim, N.H., Byung, Kook., and Hwang, B.K., Functional analysis of the promoter of the pepper pathogen-induced gene, CAPIP2, during bacterial infection and abiotic stresses, Plant Sci., 2007, vol. 172, pp. 236–245.

    Article  CAS  Google Scholar 

  • Lemmers, R. and Bol, J.F., Analysis of regulatory elements involved in stress-induced and organ-specific expression of tobacco acidic and basic beta-1,3-glucanase genes, Plant. Mol. Biol., 1993, vol. 21, pp. 451–461.

    Article  PubMed  Google Scholar 

  • Ma, B.G., Duan, X.Y., Niu, J.X., et al., Expression of stilbene synthase gene in transgenic tomato using salicylic acid-inducible Cre/LoxP recombination system with self-excision of selectable marker, Biotechnol. Lett., 2009, vol. 31, pp. 163–169.

    Article  CAS  PubMed  Google Scholar 

  • Mac, A., Krzymowska, M., Barabasz, A., and Hennig, J., Transcriptional regulation of the gluB promoter during plant response to infection, Cell Mol. Biol. Lett., 2004, vol. 9, pp. 843–853.

    CAS  PubMed  Google Scholar 

  • Malnoy, M., Reynoird, J.P., Borejsza-Wysocka, E.E., and Aldwinckle, H.S., Activation of the pathogen-inducible gst1 promoter of potato after elicitation by Venturia inaequalis and Erwinia amylovora in transgenic apple (Malus domestica), Transgenic Res., 2006, vol. 15, pp. 83–93.

    Article  CAS  PubMed  Google Scholar 

  • Manners, J.M., Penninckx, A.M.A.I., Vermaere, K., et al., The promoter of the plant defensin gene PDF1.2 from Arabidopsis is systemically activated by fungal pathogens and responds to methyl jasmonate but not to salicylic acid, Plant. Mol. Biol., 1998, vol. 38, pp. 1071–1080.

    Article  CAS  PubMed  Google Scholar 

  • Mauch-Mani, B. and Slusarenko, A.J., Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica, Plant Cell, 1996, vol. 8, pp. 203–212.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitter, N., Kazan, K., Way, M.H., Broekaert, F.W., and Manners, J.M., Systemic induction of an Arabidopsis plant defensin gene promoter by tobacco mosaic virus and jasmonic acid in transgenic tobacco, Plant Sci., 1998, vol. 136, pp. 169–180.

    Article  CAS  Google Scholar 

  • Mohan, R., Bajar, A.M., and Kolattukudy, P.E., Induction of a tomato anionic peroxidase gene (tap1) by wounding in transgenic tobacco and activation of tap1/GUS and tap2/GUS chimeric gene fusions in transgenic tobacco by wounding and pathogen attack, Plant. Mol. Biol., 1993a, vol. 21, pp. 341–354.

    Article  CAS  PubMed  Google Scholar 

  • Mohan, R., Vijayan, P., and Kolattukudy, P.E., Developmental and tissue-specific expression of a tomato anionic peroxidase (tap1) gene by a minimal promoter, with wound and pathogen induction by an additional 5'-flanking region, Plant. Mol. Biol., 1993b, vol. 22, pp. 475–490.

    Article  CAS  PubMed  Google Scholar 

  • Molina, A., Diaz, I., Vasil, I.K., Carbonero, P., and GarciaOlmedo, F., Two cold-inducible genes encoding lipid transfer protein LTP4 from barley show differential responses to bacterial pathogens, Mol. Gen. Genet., 1996, vol. 252, pp. 162–168.

    Article  CAS  PubMed  Google Scholar 

  • Park, H.C., Kim, M.L., Kang, Y.H., et al., Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 Box that interacts with a GT-1-like transcription factor, Plant Physiol., 2004, vol. 135, pp. 2150–2161.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park, H.C., Kim, M.L., Lee, S.M., et al., Pathogeninduced binding of the soybean zinc finger homeodomain proteins GmZF-HD1 and GmZF-HD2 to two repeats of ATTA homeodomain binding site in the calmodulin isoform 4 (GmCaM4) promoter, Nucleic Acids Res., 2007, vol. 35, pp. 3612–3623.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park, H.C., Kim, M.L., Kang, Y.H., et al., Functional analysis of the stress-inducible soybean calmodulin isoform-4 (GmCaM-4) promoter in transgenic tobacco plants, Mol. Cells, 2009, vol. 27, pp. 475–480.

    Article  CAS  PubMed  Google Scholar 

  • Rookes, J.E. and Cahill, D.M., Apal1 gene promoter-green fluorescent protein reporter system to analyse defense responses in live cells of Arabidopsis thaliana, Eur. J. Plant Pathol., 2003, vol. 109, pp. 83–94.

    Article  CAS  Google Scholar 

  • Schweizer, P., Tissue-specific expression of a defenserelated peroxidase in transgenic wheat potentiates cell death in pathogen-attacked leaf epidermis, Mol. Plant Pathol., 2008, vol. 9, pp. 45–57.

    Article  CAS  PubMed  Google Scholar 

  • Smirnova, O.G. and Kochetov, A.V., Wheat promoter sequences for transgene expression, Russ. J. Genet. Appl. Res., 2012, vol. 2, pp. 434–439.

    Article  Google Scholar 

  • Smirnova, O.G., Ibragimova, S.S., and Kochetov, A.V., Simple database to select promoters for plant transgenesis, Transgenic Res., 2012, vol. 21, pp. 429–437.

    Article  CAS  PubMed  Google Scholar 

  • Strittmatter, G., Gheysen, G., Gianinazzi-Pearson, V., et al., Infections with various types of organisms stimulate transcription from a short promoter fragment of the potato gst1 gene, Mol. Plant. Microbe Interact., 1996, vol. 9, pp. 68–73.

    Article  CAS  PubMed  Google Scholar 

  • Swartzberg, D., Kirshner, B., Rav-David, D., Elad, Y., and Granot, D., Botrytis cinerea induces senescence and is inhibited by autoregulated expression of the IPT gene, Eur. J. Plant Pathol., 2008, vol. 120, pp. 289–297.

    Article  CAS  Google Scholar 

  • Trifonova, E.A., Sapotsky, M.V., Komarova, M.L., et al., Protection of transgenic tobacco plants expressing bovine pancreatic ribonuclease against tobacco mosaic virus, Plant Cell Rep., 2007, vol. 26, pp. 1121–1126.

    Article  CAS  PubMed  Google Scholar 

  • Uknes, S., Dincher, S., Friedrich, L., et al., Regulation of pathogenesis-related protein-1a gene expression in tobacco, Plant Cell, 1993, vol. 5, pp. 159–169.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wiley, P.R., Tosi, P., Evrard, A., Lovegrove, A., Jones, H.D., and Shewry, P.R., Promoter analysis and immunolocalisation show that puroindoline genes are exclusively expressed in starchy endosperm cells of wheat grain, Plant. Mol. Biol., 2007, vol. 64, pp. 125–136.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, B., Chen, T.H.H., and Li, P.H., Activation of two osmotin-like protein genes by abiotic stimuli and fungal pathogen in transgenic potato plants, Plant Physiol., 1995, vol. 108, pp. 929–937.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Smirnova.

Additional information

Original Russian Text © O.G. Smirnova, A.V. Kochetov, 2014, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2014, Vol. 18, No. 4/1, pp. 765–775.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, O.G., Kochetov, A.V. Promoters of plant genes responsive to pathogen invasion. Russ J Genet Appl Res 5, 254–261 (2015). https://doi.org/10.1134/S2079059715030181

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059715030181

Keywords

Navigation