Skip to main content
Log in

An intermediate state in hydrolysis of amorphous calcium phosphate

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

The hydrolysis of previously prepared amorphous calcium phosphate (ACP) was studied in a solution “saturated” with ACP; this eliminated the initial consumption of acid due to ACP dissolution. The procedure established that conversion of a high-concentration ACP slurry to an apatite involves two processes: the first process consumes acid and indicates the formation of a more acidic calcium phosphate intermediary with the solubility of octacalcium phosphate (OCP); the second process consumes base and indicates the conversion of the intermediary to apatite and, possibly, direct conversion of ACP to apatite. The thermodynamic analysis of the solution composition data suggests that ACP converts into a nonstoichiometric apatite when the OCP-like intermediary is formed, and a stoichiometric apatite is formed when no OCP-like intermediary is involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nancollas GH, Tomazic B (1974) Growth of calcium phosphate on hydroxyapatite crystals. Effect of supersaturation and ionic medium. J Phys Chem 78:2218–2225

    Article  CAS  Google Scholar 

  2. Boskey AL, Posner AS (1976) Formation of hydroxyapatite at low supersaturations. J Phys Chem 80:40–45.

    Article  CAS  Google Scholar 

  3. Furedi-Milhofer H, Bilinski H, Brecevic LJ, Despotonic R, Filipovic-Vincekovic H, Oljica E, Purguric B (1973) The formation of calcium phosphate precipitates. Metastable equilibria and kinetics. Colloques Internationaux CNRS 230:303–310

    Google Scholar 

  4. Brown WE, Smith JP, Lehr JR, Frazier WA (1962) Crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite. Nature 196:1050–1055

    CAS  Google Scholar 

  5. Eanes ED, Meyer JL (1977) The maturation of crystalline calcium phosphates in aqueous suspensions at physiological pH. Calcif Tissue Res 23:259–269

    Article  CAS  PubMed  Google Scholar 

  6. Meyer JL, Eanes ED (1978) A thermodynamic analysis of the amorphous crystalline calcium phosphate transformation. Calcif Tissue Res 25:59–68

    Article  CAS  PubMed  Google Scholar 

  7. Meyer JL, Eanes ED (1978) A thermodynamic analysis of the secondary transition in the spontaneous precipitation of calcium phosphate. Calcif Tissue Res 25:209–216

    Article  CAS  PubMed  Google Scholar 

  8. Tomazic B, Nancollas GH (1975) The seeded growth of calcium phosphates: Surface characterization and the effect of seed material. J Coll and Interf Sci 50:451–461

    Article  CAS  Google Scholar 

  9. Tomson MB, Nancollas GH (1978) Mineralization kinetics: A constant composition approach. Science 200:1059

    CAS  PubMed  Google Scholar 

  10. Eanes ED, Posner AS (1965) Kinetics and mechanism of conversion of noncrystalline calcium phosphate to crystalline hydroxyapatite. Trans NY Acad Sci 28:233–241

    CAS  Google Scholar 

  11. Boskey AL, Posner AS (1973) Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite. A pH-dependent, solution-mediated, solid-solid conversion. J Phys Chem 77:2312–2317

    Article  Google Scholar 

  12. Blumenthal NC, Betts F, Posner AS (1977) Stabilization of amorphous calcium phosphate by Mg and ATP. Calcif Tissue Res 23:245–250

    Article  CAS  PubMed  Google Scholar 

  13. Blumenthal NC, Betts F, Posner AS (1981) Formation and structure of Ca-deficient hydroxyapatite. Calcif Tissue Int 33:111–117

    CAS  PubMed  Google Scholar 

  14. Brown WE, Mathew M, Tung MS (1981) Crystal chemistry of octacalcium phosphate. Prog Crystal Growth Charact 4:59–87

    Article  CAS  Google Scholar 

  15. Leroy O (1976) Universite Louis Pasteur de Strasbourg, Doctoral thesis

  16. Höhling HJ, Frank RM, Hardt R (1963) Deutsches Zahnärzteblatt 17:77

    Google Scholar 

  17. Michaylova V, Ilkova P (1971) Photometric determination of micro amounts of calcium with Arsenazo III. Anal Chim Acta 52:194–198

    Article  Google Scholar 

  18. Brabson JS, Dunn RL, Epps EZ Jr, Hoffman WM, Jacob KD (1958) Report on phosphorus in fertilizers: Photometric determination of total phosphorous. J Assoc Off Anal Chem 41:517

    CAS  Google Scholar 

  19. Hess HH, Derr JE (1975) Assay of inorganic and organic phosphorus in the 0.1–5 nanomole range. Anal Biochem 63:607–617

    Article  CAS  PubMed  Google Scholar 

  20. Gregory TM, Moreno EC, Brown WE (1970) Solubility of CaHPO4·2H2O in the system Ca(OH)2-H3PO4-H2O at 5, 15, 25, and 37.5°C. J Res Natl Bur Stand 74A:461–475

    Google Scholar 

  21. Gregory TM, Moreno EC, Patel JM, Brown WE (1974) Solubility of β-Ca3(PO4)2 in the system Ca(OH)2-H3PO4-H2O at 5, 15, 25, and 37°C. J Res Natl Bur Stand 78A:667–674

    CAS  Google Scholar 

  22. Moreno EC, Brown WE, Osborn (1960) Stability of dicalcium phosphate dihydrate in aqueous solutions and solubility of octacalcium phosphate. Soil Science Society of American Proceedings 21:99–102

    Article  Google Scholar 

  23. Madsen HE (1970) Ionic concentrations in calcium phosphate solutions. I. Solutions saturated with respect to brushite or tetracalcium monohydrogen phosphate at 37°C. Acta Chem Scand 24:1671–1676

    Article  CAS  Google Scholar 

  24. McDowell H, Wallace BM, Brown WE (1969) The solubilities of hydroxyapatite at 5, 15, 25, and 37°C. Abstracted, IADR Program and Abstracts of Papers, No. 340

  25. Davies CW (1962) Ion Association. Butterworth, London

    Google Scholar 

  26. MacGregor J, Brown WE (1965) Blood:bone equilibrium in calcium homoeostasis. Nature 205:359–361

    CAS  PubMed  Google Scholar 

  27. Williams G, Sallis JD (1982) Structural factors influencing the ability of compounds to inhibit hydroxyapatite formation. Calcif Tissue Res Int 34:169–177

    CAS  Google Scholar 

  28. Feenstra TP, de Bruyn PL (1979) Formation of calcium phosphates in moderately supersaturated solutions. J Phys Chem 83:475–479

    Article  CAS  Google Scholar 

  29. Brown WE (1966) Crystal growth of bone mineral. Clin Orthop 44:205–220

    CAS  PubMed  Google Scholar 

  30. Posner AS, Perloff A (1957) Apatites deficient in divalent cations. J Res Natl Bur Stand A58:279–286

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tung, M.S., Brown, W.E. An intermediate state in hydrolysis of amorphous calcium phosphate. Calcif Tissue Int 35, 783–790 (1983). https://doi.org/10.1007/BF02405124

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02405124

Key Words

Navigation