Skip to main content
Log in

High-resolution electron microscopy of octacalcium phosphate and its hydrolysis products

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

The hydrolysis and dehydration products of synthetic octacalcium phosphate (OCP) were studied using X-ray diffraction, infrared spectroscopy, chemical analysis, and high-resolution electron microscopy (HREM). A “collapsed OCP” phase, identified by a characteristic 16.5 Å reflection in its X-ray diffraction pattern, was observed when OCP was dehydrated. High resolution electron microscopy of the hydrolyzed and partially hydrolyzed reaction products also revealed local contrast features with an approximate 16.5 Å periodicity. These features were consistent with a collapse of the OCP crystal structure and subsequent formation of epitaxial intergrowths of OCP and hydroxyapatite. Chemical analysis and X-ray diffraction of these samples were similar to previously reported calcium-deficient apatites. The hydrolysis of OCP to form calcium-deficient apatities is a reaction pathway which may be of importance in understanding the crystallographic changes occurring during the early stages of bone, calculus, and dental enamel formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Young RA (1974) Implications of atomic substitutions and other structural details in apatites. J Dent Res (Suppl) 53:193–203

    CAS  PubMed  Google Scholar 

  2. Brown WE (1966) Crystal growth of bone mineral. Clin Orthop 44:205–220

    CAS  PubMed  Google Scholar 

  3. Simpson DR (1972) Problems of the composition and structure of the bone minerals. Clin Orthop Rel Res 86:260–286

    CAS  Google Scholar 

  4. Nelson DGA, Featherstone JDB (1982) Preparation, analysis and characterization of carbonated apatites. Calcif Tissue Int 34 (Suppl 2) S69-S81

    PubMed  Google Scholar 

  5. Nancollas GH, Mohan MS (1970) The growth of hydroxyapatite crystals. Arch Oral Biol 15:731–745

    Article  CAS  PubMed  Google Scholar 

  6. Meyer JL, Eick JD, Nancollas GH, Johnson LN (1972) A scanning electron microscopic study of the growth of hydroxyapatite crystals. Calcif Tissue Res 10:91–102

    Article  CAS  PubMed  Google Scholar 

  7. Nancollas GH, Tomazic B (1974) Growth of calcium phosphate on hydroxyapatite crystals. Effect of supersaturation and ionic medium. J Phys Chem 78:2218–2225

    Article  CAS  Google Scholar 

  8. Nancollas GH (1982) Biological mineralization and demineralization, Nancollas GH (ed) Dahlem Konferenzen 1982, Springer-Verlag, Berlin, pp 79–99

    Google Scholar 

  9. Brown WE, Smith JP, Lehr JR, Frazier AW (1962) Crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite. Nature 196:1050–1055

    CAS  Google Scholar 

  10. Eanes ED, Meyer JL (1977) The maturation of crystalline calcium phosphates in aqueous suspensions at physiologic pH. Calcif Tissue Res 23:259–269

    Article  CAS  PubMed  Google Scholar 

  11. Berry EE (1967) The structure and composition of some calcium-deficient apatites. J Inorg Nucl Chem 29:317–327

    Article  CAS  Google Scholar 

  12. Brown WE, Schroeder LW, Ferris JS (1979) Interlayering of crystalline octacalcium phosphate and hydroxyapatite. J Phys Chem 83:1385–1388

    Article  CAS  Google Scholar 

  13. Boskey AL, Posner AS (1976) Formation of hydroxyapatite at low supersaturation. J Phys Chem 80:40–45

    Article  CAS  Google Scholar 

  14. Gruninger SE, Siew C, Hefferen JJ, Chow LC, Brown WE (1982) Further evidence for octacalcium phosphate as a precursor to enamel. Program and abstracts 60th General Session IADR, Abstract No. 160

  15. Schroeder HE, Bambauer HU (1966) Stages of calcium phosphate crystallization during calculus formation. Archs Oral Biol 11:1–14

    Article  CAS  Google Scholar 

  16. Chen PS, Toribara TY, Warner H (1956) The microdetermination of phosphorus. Anal Chem 28:1756–1758

    Article  CAS  Google Scholar 

  17. Brown WE (1962) Octacalcium phosphate and hydroxyapatite. Nature 196:1048–1050

    CAS  Google Scholar 

  18. Fowler BO, Moreno EC, Brown WE (1966) Infra-red spectra of hydroxyapatite, octacalcium phosphate and pyrolysed octacalcium phosphate. Arch Oral Biol 11:477–492

    Article  CAS  PubMed  Google Scholar 

  19. Meyer JL, Fowler BO (1982) Lattice defects in nonstoichiometric calcium hydroxyapatites. A chemical approach. Inorg Chem 21:3029–3035

    Article  CAS  Google Scholar 

  20. Cherns D, Hutchinson ML, Jenkins ML, Hirsch PB, White (1980) Electron irradiation-induced vitrification at dislocations in quartz. Nature 287:314–316

    Article  CAS  Google Scholar 

  21. Nelson DGA, McLean JD, Sanders JV (1982) High-resolution electron microscopy of electron irradiation damage in apatite. Rad Effs Lett 68:51–56

    CAS  Google Scholar 

  22. Bursill LA, Lodge EA, Thomas JM (1980) Zeolitic structures as revealed by high-resolution electron microscopy. Nature 286:111–113

    Article  CAS  Google Scholar 

  23. Aoba T, Takahashi J, Yagi T, Doi Y, Okazaki M, Moriwaki Y (1981) High-voltage electron microscopy of radiation damages in octacalcium phosphate. J Dent Res 60:954–959

    CAS  PubMed  Google Scholar 

  24. Young RA, Brown WE (1982) Biological mineralization and demineralization, Nancollas GH (ed) Dhalem Konferenzen 1982, Springer-Verlag, Berlin, pp 119–123

    Google Scholar 

  25. Dickens B, Schroeder LW (1980) Investigation of epitaxy relationships between Ca5(PO4)3OH and other calcium ortho-phosphates. J Res Nat Bur Stand 85:347–362

    CAS  Google Scholar 

  26. Nelson DGA (1981) The influence of carbonate on the atomic structure and reactivity of hydroxyapatite. J Dent Res 60(C):1621–1629

    CAS  PubMed  Google Scholar 

  27. McLean JD, Nelson DGA (1982) High-resolution n-beam lattice images of hydroxyapatite. Micron 13:409–413

    CAS  Google Scholar 

  28. Rönnholm E (1962) The amelogenesis of human teeth as revealed by electron microscopy. II the development of the enamel crystals. J Ultrastruct Res 6:249–303

    Article  PubMed  Google Scholar 

  29. Weiss MP, Voegel JC, Frank RM (1981) Enamel crystallite growth: Width and thickness study related to the possible presence of octacalcium phosphate during amelogenensis. J Ultrastruct Res 76:286–292

    Article  CAS  PubMed  Google Scholar 

  30. Bocciarelli DS (1970) Morphology of crystallites in bone. Calcif Tissue Res 5:261–269

    Article  CAS  PubMed  Google Scholar 

  31. Jackson SA, Cartwright AG, Lewis D (1978) The morphology of bone mineral crystals. Calcif Tissue Res 25:217–222

    Article  CAS  PubMed  Google Scholar 

  32. Catterji S, Wall JC, Jeffery JW (1981) Age-related changes in the orientation and particle size of the mineral in human femoral cortical bone. Calcif Tissue Int 33:567–574

    Google Scholar 

  33. Wheeler EJ, Lewis D (1977) An x-ray study of the paracrystalline nature of bone apatite. Calcif Tissue Res 24:243–248

    Article  CAS  PubMed  Google Scholar 

  34. Nelson DGA, Featherstone JDB, Duncan JF, Cutress TW (1982) Paracrystalline disorder of biological and synthetic carbonate-substituted apatites. J Dent Res 61:1274–1281

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, D.G.A., McLean, J.D. High-resolution electron microscopy of octacalcium phosphate and its hydrolysis products. Calcif Tissue Int 36, 219–232 (1984). https://doi.org/10.1007/BF02405321

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02405321

Key words

Navigation