Skip to main content
Log in

The Effect of the Structure of a Positive Electrode on the Process of Discharge of a Lithium–Oxygen Power Source. The Monoporous Cathode Theory

  • PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The results of computerized simulation of the process of formation of lithium peroxide attending the discharge of lithium–oxygen power source, in individual pore of constant radius are presented. It is found that, in the model of porous cathode (pores are tortuous, noncrossing, and of the same radius), variation of specific surface of the pores (decrease of pore radius) does not enable a possibility to increase notably the value of specific capacity of the cathode. A necessity of presence of both macropores, and micro- and mesopores in the structure of the active material was discussed. The effect of porous structure of the cathode on the discharge characteristics of LOPS was experimentally demonstrated by the example of some cathode materials (carbon blacks and carbon nanotubes). The highest discharge capacity was achieved with use of the sample of CNT-TNaOH combining pores of various sizes, which corresponds to the formulated hypotheses about an optimal structure of the active cathode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Abraham, K.M. and Jiang, Z., J. Electrochem. Soc., 1996, vol. 143, p. 1.

    Article  Google Scholar 

  2. Bruce, P.G., Freuriberger, S.A., Hardwick, L.J., and Tarascon, J.M., Nat. Mater., 2012, vol. 11, p. 19.

    Article  Google Scholar 

  3. Laoire, C.O., Mukerjee, S., Abraham, K.M., et al., J. Phys. Chem. C, 2009, vol. 113, no. 46, p. 20127.

    Article  Google Scholar 

  4. Tran, C., Yang, X.-Q., and Qu, D., J. Power Sources, 2010, vol. 195, no. 7, p. 2057.

    Article  Google Scholar 

  5. Yang, X.-H., He, P., and Xia, Y.-Y., Electrochem. Commun., 2009, vol. 11, no. 6, p. 1127.

    Article  Google Scholar 

  6. Laoire, C.O., Mukerjee, S., Abraham, K.M., et al., J. Phys. Chem. C, 2010, vol. 114, no. 19, p. 9178.

    Article  Google Scholar 

  7. Andrei, P., Zheng, J.P., Hendrickson, M., and Plichta, E.J., J. Electrochem. Soc., 2010, vol. 157, p. A1287.

    Article  Google Scholar 

  8. Sandhu, S., Fellner, J., and Brutchen, G., J. Power Sources, 2007, vol. 164, no. 1, p. 365.

    Article  Google Scholar 

  9. Dabrowski, T., Struck, A., Fenske, D., et al., J. Electrochem. Soc., 2015, vol. 162, no. 14, p. A2796.

    Article  Google Scholar 

  10. Read, J., Mutolo, K., Ervin, M., et al., J. Electrochem. Soc., 2003, vol. 150, p. A1351.

    Article  Google Scholar 

  11. Read, J., J. Electrochem. Soc., 2002, vol. 149, p. A1190.

    Article  Google Scholar 

  12. Chirkov, Yu.G., Rostokin, V.I., and Skundin, A.M., Russ. J. Electrochem., 2011, vol. 47, p. 71.

    Article  Google Scholar 

  13. Shu, C., Li, S.B., and Zhang, B., ChemSusChem, 2015, vol. 8, p. 3973.

    Article  Google Scholar 

  14. Tarasevich, M.R., Andreev, V.N., Korchagin, O.V., and Tripachev, O.V., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, p. 1.

    Article  Google Scholar 

  15. Li, Y., Li, W., He, X., et al., J. Energy Chem., 2016, vol. 25, p. 131.

    Article  Google Scholar 

  16. Kang, J., Li, O.L., and Saito, N., J. Power Sources, 2014, vol. 261, p. 15.

    Article  Google Scholar 

  17. Kraytsberg, A. and Ein-Eli, Y., J. Power Sources, 2011, vol. 196, no. 3, p. 886.

    Article  Google Scholar 

  18. Yoon, Y., Ganapathi, K., and Salahuddin, S., Nano Lett., 2011, vol. 11, p. 5071.

    Article  Google Scholar 

  19. Meini, S., Piana, M., Beyer, H., et al., J. Electrochem. Soc., 2012, vol. 159, p. A2135.

    Article  Google Scholar 

  20. Wang, J., Li, Y., and Sun, X., Nano Energy, 2013, vol. 2, no. 4, p. 443.

    Article  Google Scholar 

  21. Bogdanovskaya, V.A., Koltsova, E.M., Zhutaeva, G.V., Radina, M.V., Kazanskii, L.P., Tarasevich, M.R., Skichko, E.A., and Gavrilova, N.N., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 1, p. 45.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Competitiveness Enhancement Program of National Research Nuclear University (MEPhI), and partially supported by the Russian Foundation for Basic Research (grant no. 16-03-00378 A, IPCE, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Bogdanovskaya, Yu. G. Chirkov or O. V. Korchagin.

Additional information

Translated by G. Levina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdanovskaya, V.A., Chirkov, Y.G., Rostokin, V.I. et al. The Effect of the Structure of a Positive Electrode on the Process of Discharge of a Lithium–Oxygen Power Source. The Monoporous Cathode Theory. Prot Met Phys Chem Surf 54, 1015–1025 (2018). https://doi.org/10.1134/S2070205118060060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205118060060

Keywords:

Navigation