Skip to main content
Log in

A cathode for solid polymer electrolyte fuel cells: Designing the optimal structure of the active layer

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The complete computer simulation of the cathodic active layer with solid polymer electrolyte (Nafion) is carried out. The active layer structure can be described by 8 parameters. In designing the optimal structure, it is shown that to provide the high overall characteristics of the cathode and save the catalyst, 0.5 of the active layer volume should be set aside for the support grains (agglomerates of carbon particles covered with platinum and containing Nafion incorporations and microvoids). Protons and oxygen molecules must be supplied to the active layer by means of peculiar combined percolation clusters. The latter consist of a combination of support grains with either Nafion grains (to produce “protonic” clusters) or grains-voids (to afford “gas” clusters). The volume fractions of Nafion grains and grain-voids are assumed to be 0.25 and 0.25. The computer simulation of the support grain structure is also carried out. Their composition, i.e., the volume fractions of the carbon component (g e), Nafion (g ii), and microvoids (g gg), is varied. The support grains play the key role in the active layer functioning. It is impossible to organize three full-value percolation clusters (electronic, protonic, and gas); hence, one has to have one or two combined clusters in the active layer. Thus the double load fells on the support grains. Their optimal structure should not only sustain the transport of protons and electrons in the active layer but also create the best conditions for the electrochemical process in each grain. The maximum current I max (realized upon reaching the optimal active layer thicknesses Δ*) is calculated. The dependences of I max and Δ* on the main parameters characterizing the support grains (g e and g ii) are analyzed. Here, two goals are sought: (1) to obtain the high currents, (2) to provide the low consumption of platinum per power unit. To solve the first problem, one has to work with high values of g e. The second problem requires the opposite: the values of g e must be minimal possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Uchida, M., Fukuoka, Y., Sugawara, Y., Eda, N., and Ohta, A., J. Electrochem. Soc., 1996, vol. 143, p. 2245.

    Article  CAS  Google Scholar 

  2. Uchida, M., Fukuoka, Y., Sugawara, Y., Ohara, H., and Ohta, A., J. Elelectrochem. Soc., 1998, vol. 145, p. 3708.

    Article  CAS  Google Scholar 

  3. Uchida, H., Song, J.M., Suzuki, S., Nakazawa, E., Baba, N., and Watanabe, M., J. Phys. Chem. B, 2006, vol. 110, p. 13319.

    Article  CAS  Google Scholar 

  4. PEM Fuel-Cell Electrocatalysis and Catalyst Layers: Fundamentals and Applications, Zhang, J., Ed., London: Springer, 2008.

    Google Scholar 

  5. Malek, K., Eikerling, M., Wang, Q., Navessiu, T., and Liu, Z., J. Phys. Chem. C, 2007, vol. 111, p. 13627.

    Article  CAS  Google Scholar 

  6. Izvekov, S. and Violi, A., J. Chem. Theory Comput., 2006, vol. 2, p. 504.

    Article  CAS  Google Scholar 

  7. Xie, J., Wood, I.D.L., Wayne, D.M., Zawodzinski, T.A., Atanassov, P., and Borup, R.L., J. Electrochem. Soc., 2005, vol. 152, p. A104.

    Article  CAS  Google Scholar 

  8. Mukherjee, P.P. and Wang, C.Y., J. Electrochem. Soc., 2006, vol. 153, p. A840.

    Article  CAS  Google Scholar 

  9. Rong, F., Huang, C., Liu, Z.-S., Song, D., and Wang, Q., J. Power Sources, 2008, vol. 175, p. 699.

    Article  CAS  Google Scholar 

  10. Rong, F., Huang, C., Liu, Z.-S., Song, D., and Wang, Q., J. Power Sources, 2008, vol. 175, p. 712.

    Article  CAS  Google Scholar 

  11. Chirkov, Yu.G. and Rostokin, V.I., Russ. J. Electrochem., 2004, vol. 40, p. 898.

    Article  CAS  Google Scholar 

  12. Tarasevich, Yu.Yu., Perkolyatsiya: teoriya, prilozheniya, algoritmy (Percolation: Theory, Applications, Algorithms), Moscow: Editorial URSS, 2001.

    Google Scholar 

  13. Chirkov, Yu.G., Russ. J. Electrochem., 1999, vol. 35, p. 1281.

    CAS  Google Scholar 

  14. Chirkov, Yu.G. and Rostokin, V.I., Russ. J. Electrochem., 2011, vol. 47, p. 71.

    Article  CAS  Google Scholar 

  15. Chirkov, Yu.G. and Rostokin, V.I., Russ. J. Electrochem., 2012, vol. 48, p. 1086.

    Article  CAS  Google Scholar 

  16. Chirkov, Yu.G. and Rostokin, V.I., Russ. J. Electrochem., 2013, vol. 49, p. 149.

    Article  CAS  Google Scholar 

  17. Xie, Z., Navessin, T., Shi, K., Chow, R., Wang, Q., Song, D., Andreaus, B., Eikerling, M., Liu, Z., and Holdcroft, S., J. Electrochem. Soc., 2005, vol. 152, p. A1171.

    Article  CAS  Google Scholar 

  18. Damjanovic, A., Genshaw, M.A., and Bockris, J.O’M., J. Phys. Chem., 1966, vol. 45, p. 4057.

    Article  CAS  Google Scholar 

  19. Sepa, D.B., Vojnovic, V., and Damjanovic, A., Electrochim. Acta, 1981, vol. 26, p. 781.

    Article  CAS  Google Scholar 

  20. Parthasarathy, A., Srinivasan, S., and Appleby, J., J. Electrochem. Soc., 1992, vol. 139, p. 2530.

    Article  CAS  Google Scholar 

  21. Antoine, O., Bultel, Y., and Durand, R., J. Electroanal. Chem., 2001, vol. 499, p. 85.

    Article  CAS  Google Scholar 

  22. Chirkov, Yu.G. and Rostokin, V.I., Russ. J. Electrochem., 2006, vol. 42, p. 722.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Chirkov.

Additional information

Original Russian Text © Yu.G. Chirkov, V.I. Rostokin, 2014, published in Elektrokhimiya, 2014, Vol. 50, No. 9, pp. 968–982.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirkov, Y.G., Rostokin, V.I. A cathode for solid polymer electrolyte fuel cells: Designing the optimal structure of the active layer. Russ J Electrochem 50, 872–884 (2014). https://doi.org/10.1134/S102319351409002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351409002X

Keywords

Navigation