Skip to main content
Log in

A Regular Biporous Model of the Cathode Active Layer Structure of a Lithium-Oxygen Battery. Calculation of Overall Characteristics of the Cathode Active Layer

  • PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The active layer of a lithium-oxygen battery (LOB) cathode must have a complex structure consisting of two types of pores (macropores and mesopores). For successful operation of the cathode active layer during the LOB discharge, attempts are being made to create two types of pore clusters: a macropore cluster that provides the transport of oxygen to a zone, where the final product, lithium peroxide, is formed, and a mesopore cluster that guarantees the delivery of lithium ions. The structure of the cathode active layer composed of two types of clusters is optimized in model calculations. However, it from the experimental data, even after the actual implementation of these theoretical recommendations, that the LOB dimensional characteristics during the discharge (in particular, current density I, mA/cm2, and cathodic capacitance C, C/cm2) remain low. In the present work, a new type of cathode active layer structure was suggested: a regular biporous model. In this model, the channels for the supply with oxygen and lithium ions are separated from each other. This fact allows one to simultaneously and independently improve the operation of each of the two channels. The calculations showed a clear advantage of the active layers with this new structure. In particular, the current density i and cathode capacitance С raised to tens of mA/cm2 and about of a thousand of C/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Abraham, K.M., J. Electrochem. Soc., 1996, vol. 143, p. 1.

    CAS  Google Scholar 

  2. Bruce, P.G., et al., Nat. Mater., 2012, vol. 11, p. 19.

    CAS  Google Scholar 

  3. Tran, C., J. Power Sources, 2010, vol. 195, p. 2057.

    CAS  Google Scholar 

  4. Yang, X.-h., He, P., and Xia, Y.-y., Electrochem. Commun., 2009, vol. 11, p. 1127.

    CAS  Google Scholar 

  5. Laoire, C.O., Mukerjee, S., and Abraham, K.M., J. Phys. Chem. C, 2009, vol. 113, p. 20127.

    CAS  Google Scholar 

  6. Laoire, C.O., Mukerjee, S., and Abraham, K.M., J. Phys. Chem. C, 2010, vol. 114, p. 9178.

    CAS  Google Scholar 

  7. Ma, Z., Yuan, X., Li, L., Ma, Z.-F., Wilkinson, D.P., Zhang, L., and Zhang, J., Energy Environ. Sci., 2015, vol. 8, p. 2144.

    CAS  Google Scholar 

  8. Tarasevich, M.R., Andreev, V.N., Korchagin, O.V., and Tripachev, O.V., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, p. 1.

    CAS  Google Scholar 

  9. Pan, W., Yang, X., Bao, J., and Wang, M., J. Electrochem. Soc., 2017, vol. 164, p. E3499.

    CAS  Google Scholar 

  10. Chirkov, Yu.G., Andreev, V.N., Rostokin, V.I., and Bogdanovskaya, V.A., Altern. Energy Ecol. (ISJAEE), 2018, nos. 4–6, p. 95.

  11. Tarasevich, Yu.Yu., Perkolyatsiya: teoriya, prilozheniya, algoritmy (Percolation: Theory, Applications, Algorithms), Moscow: Editorial URSS, 2011.

  12. Chirkov, Yu.G., Andreev, V.N., Rostokin, V.I., and Bogdanovskaya, V.A., Russ. J. Electrochem., 2019, vol. 55, no. 9, p. 860.

    CAS  Google Scholar 

  13. Sandhu, S., Fellner, J., and Brutchen, G., J. Power Sources, 2007, vol. 164, p. 365.

    CAS  Google Scholar 

  14. Dabrowski, T., Struck, A., Fenske, D., Maaß, P., and Colombi Ciacchi, L., J. Electrochem. Soc., 2015, vol. 162, pp. A2796–A2804.

    CAS  Google Scholar 

  15. Read, J., Mutolo, K., Ervin, M., Behl, W., Wolfenstine, J., Driedger, A., and Foster, D., J. Electrochem. Soc., 2003, vol. 150, p. A1351.

    CAS  Google Scholar 

  16. Edwards, C.H. and Penny, D.E., Differential Equations and Boundary Value Problems: Computing and Modeling, Pearson, 2008.

    Google Scholar 

  17. Goloskokov, D.P., Uravneniya matematicheskoi fiziki. Reshenie zadach v sisteme Maple (Equations of Mathematical Physics. Solving Problems in the Maple System), St. Petersburg: Piter, 2004.

  18. Bogdanovskaya, V.A., Chirkov, Yu.G., Rostokin, V.I., Yemetz, V.V., Korchagin, O.V., Andreev, V.N., and Tripachev, O.V., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 6, p. 1015.

    CAS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. G. Chirkov, V. I. Rostokin, V. N. Andreev, V. A. Bogdanovskaya or O. V. Korchagin.

Additional information

Translated by E. Khozina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirkov, Y.G., Rostokin, V.I., Andreev, V.N. et al. A Regular Biporous Model of the Cathode Active Layer Structure of a Lithium-Oxygen Battery. Calculation of Overall Characteristics of the Cathode Active Layer. Prot Met Phys Chem Surf 56, 716–724 (2020). https://doi.org/10.1134/S2070205120030119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120030119

Keywords:

Navigation