Skip to main content

Discharge of Lithium–Oxygen Power Source: Effect of Active Layer Thickness and Current Density on Overall Characteristics of Positive Electrode

  • Conference paper
  • First Online:
Computational Statistics and Mathematical Modeling Methods in Intelligent Systems (CoMeSySo 2019 2019)

Abstract

A distinctive feature of discharge of the lithium–oxygen power source (LOPS) with nonaqueous electrolyte is the filling of the positive electrode pores by lithium peroxide that is not soluble in the electrolyte and is characterized by low conductivity. Generally, the cathodic discharge process can be carried out only in a comparatively thin, several tens of micrometers, porous layer bordering on the gas phase. Therefore, the capacity per 1 cm2 of the outer cathode surface proves to be small. In this connection, the problem arises of developing more advanced LOPS and providing efficient performance of the active layers of the positive electrode at an increase in their thickness to achieve higher overall characteristics. In this work, the authors obtain experimental dependences of the positive electrode capacity on the active layer thickness and various current density values. Theoretical analysis of the obtained experimental data is performed. Here, the issues that are of considerable interest of the LOPS discharge theory are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tarasevich, M.R., Andreev, V.N., Korchagin, O.V., Tripachev, O.V.: Lithium-oxygen (air) batteries (state-of-the-art and perspectives). Prot. Met. Phys. Chem. Surf. 53, 1–48 (2017)

    Article  Google Scholar 

  2. Tran, C., Yang, X.-Q., Qu, D.: Investigation of the gas-diffusion-electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity. J. Power Sources 195, 2057–2063 (2010)

    Article  Google Scholar 

  3. Yang, X.-H., He, P., Xia, Y.-Y.: Preparation of mesocellular carbon foam and its application for lithium/air battery. Electrochem. Commun. 11, 1127–1130 (2009)

    Article  Google Scholar 

  4. Laoire, C.O., Mukerjee, S., Abraham, K.M., Plichta, E.J., Hendrickson, M.A.: Elucidating the mechanism of oxygen reduction for lithium-air battery applications. J. Phys. Chem. C 113, 20127–20134 (2009)

    Article  Google Scholar 

  5. Laoire, C.O., Mukerjee, S., Abraham, K.M., Plichta, E.J., Hendrickson, M.A.: Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium − air battery. J. Phys. Chem. C 114, 9178–9186 (2010)

    Article  Google Scholar 

  6. Mohazabrad, F., Wang, F., Li, X.: Experimental studies of salt concentration in electrolyte on the performance of Li-O2 batteries at various current densities. J. Electrochem. Soc. 163, A2623–A2627 (2016)

    Article  Google Scholar 

  7. Liu, T., Leskes, M., Yu, W., Moore, A.J., Zhou, L., Bayley, P.M., Kim, G., Grey, C.P.: Cycling Li-O2 batteries via LiOH formation and decomposition. Science 350, 530–533 (2015)

    Article  Google Scholar 

  8. Nomura, A., Ito, K., Kubo, Y.: CNT sheet air electrode for the development of ultra-high cell capacity in lithium-air batteries. Sci. Rep. 7, 45596 (2017)

    Article  Google Scholar 

  9. Imanishi, N., Luntz, A.C., Bruce, P.G. (eds.): The Lithium-Air Battery. Fundamentals. Springer, New York (2014)

    Google Scholar 

  10. Abraham, K.M., Jiang, Z.: A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996)

    Article  Google Scholar 

  11. Beattie, S.D., Manolescu, D.M., Blair, S.L.: High-capacity lithium-air cathodes. J. Electrochem. Soc. 156, A44–A47 (2009)

    Article  Google Scholar 

  12. Xiao, J., Wang, D., Xu, W., Wang, D., Williford, R.E., Liu, J., Zhang, J.-G.: Optimization of air electrode for Li/air batteries. J. Electrochem. Soc. 157, A487–A492 (2010)

    Article  Google Scholar 

  13. Zhang, G.Q., Zheng, J.P., Liang, R., Zhang, C., Wang, B., Hendrickson, M., Plichta, E.J.: Lithium–air batteries using SWNT/CNF buckypapers as air electrodes. J Electrochem Soc 157, A953–A956 (2010)

    Article  Google Scholar 

  14. Landa-Medrano, I., Pinedo, R., Ruiz de Larramendi, I., Ortiz-Vitoriano, N., Rojo, T.: Monitoring the location of cathode-reactions in Li-O2 batteries. J. Electrochem. Soc. 162, A3126–A3132 (2015)

    Article  Google Scholar 

  15. Bogdanovskaya, V.A., Korchagin, O.V., Tarasevich, M.R., Andreev, V.N., Nizhnikovskii, E.A., Radina, M.V., Tripachev, O.V., Emets, V.V.: Mesoporous nanostructured materials for the positive electrode of a lithium-oxygen battery. Prot. Met. Phys. Chem. Surf. 54, 373–388 (2018)

    Article  Google Scholar 

  16. Bogdanovskaya, V.A., Kol’tsova, E.M., Tarasevich, M.R., Radina, M.V., Zhutaeva, G.V., Kuzov, A.V., Gavrilova, N.N.: Highly active and stable catalysts based on nanotubes and modified platinum for fuel cells. Russ. J. Electrochem. 52, 723–734 (2016)

    Article  Google Scholar 

  17. Bao, J., Hu, W., Bhattacharya, P., Stewart, M., Zhang, J.-G., Pan, W.: Discharge performance of Li-O2 batteries using a multiscale modeling approach. J. Phys. Chem. C 119, 14851–14860 (2015)

    Article  Google Scholar 

  18. Pan, W., Yang, X., Bao, J., Wang, M.: Optimizing discharge capacity of Li-O2 batteries dy design of air-electrode porous structure: multifidelity modeling and optimization. J. Electrochem. Soc. 164, E3499–E3511 (2017)

    Article  Google Scholar 

  19. Tarasevich, Y.Y.: Percolation: Theory, Applications, Algorithms. Editorial URSS, Moscow (2011)

    Google Scholar 

  20. Chirkov, Y.G.: Theory of porous electrodes: the percolation and a calculation of percolation lines. Russ. J. Electrochem. 35, 1281–1290 (1999)

    Google Scholar 

  21. Chirkov, Y.G., Rostokin, V.I., Skundin, A.M.: Computer modeling of positive electrode operation in lithium-ion battery: model of equal-sized grains, percolation calculations. Russ. J. Electrochem. 47, 71–83 (2011)

    Article  Google Scholar 

  22. Sandhu, S.S., Fellner, J.P., Brutchen, G.W.: Diffusion-limited model for a lithium/air battery with an organic electrolyte. J. Power Sources 164, 365–371 (2007)

    Article  Google Scholar 

  23. Read, J., Mutolo, K., Ervin, M., Behl, W., Wolfenstine, J., Driedger, A., Foster, D.: Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery. J. Electrochem. Soc. 150, A1351–A1356 (2003)

    Article  Google Scholar 

  24. Dabrowski, T., Struck, A., Fenske, D., Maaβ, P., Ciacchi, L.C.: Optimization of catalytically active sites positioning in porous cathodes of lithium/air batteries filled with different electrolytes. J. Electrochem. Soc. 162, A2796–A2804 (2015)

    Article  Google Scholar 

  25. Bogdanovskaya, V.A., Andreev, V.N., Chirkov, Y., Rostokin, V.I., Emets, V.V., Korchagin, O.V., Tripachev, O.V.: Effect of positive electrode structure on process of discharge of lithium-oxygen (air) power source. theory of monoporous cathode. Prot. Met. Phys. Chem. Surf. 54, 1015–1025 (2018)

    Article  Google Scholar 

  26. Chirkov, Y., Andreev, V.N., Rostokin, V.I., Bogdanovskaya, V.A.: Discharge of lithium-oxygen power source: monoporous cathode theory and role of constant of oxygen consumption process. Altern. Energy Ecol. (ISJAEE) 4–6, 95–107 (2018)

    Article  Google Scholar 

  27. Dyakonov, V.P.: Maple 10/11/12/13/14 in Mathematical Calculations (Russian Edition). DMK-Press, Moscow (2011)

    Google Scholar 

  28. Davis, J.H.: Differential Equations with Maple: An Interactive Approach. Birkhauser, Boston (2001)

    Book  Google Scholar 

  29. Edwards, C.H., Penny, D.E.: Differential Equations and Boundary Value Problems: Computing and Modeling, 3rd edn. Moscow (2008)

    Google Scholar 

Download references

Acknowledgement

The work was performed with support of Ministry of Science and Higher Education of Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera A. Bogdanovskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chirkov, Y.G., Korchagin, O.V., Andreev, V.N., Bogdanovskaya, V.A., Rostokin, V.I. (2019). Discharge of Lithium–Oxygen Power Source: Effect of Active Layer Thickness and Current Density on Overall Characteristics of Positive Electrode. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds) Computational Statistics and Mathematical Modeling Methods in Intelligent Systems. CoMeSySo 2019 2019. Advances in Intelligent Systems and Computing, vol 1047. Springer, Cham. https://doi.org/10.1007/978-3-030-31362-3_7

Download citation

Publish with us

Policies and ethics