Skip to main content
Log in

Hydrogenation of Vegetable Oils over a Palladium Catalyst Supported on Activated Diatomite

  • CATALYSIS AND NANOTECHNOLOGIES
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

A possibility of lowering the formation of trans-isomers during hydrogenation of vegetable oils over a low-loaded palladium catalyst supported on activated diatomite was studied. The comparison to the commercial nickel catalyst led to establish that the activated diatomite is a promising support of the catalyst for hydrogenation of plant oil. Palladium particles of 2–10 nm in size (3–6 nm particles predominated) were shown to be uniformly distributed over the support surface. It was shown experimentally that the Pd catalyst was more active and selective at low temperature than the nickel catalyst to provide two-fold decrease in the concentration of trans-isomers in the hydrogenated fat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. O’Brien, R.D., Fats and Oils: Formulating and Processing for Applications, New York: CRC Press, 2008.

    Book  Google Scholar 

  2. Hydrogenation of Fats and Oils: Theory and Practice, List, G.R. and King, J.W., Eds., Urbana, IL: AOCS Press, 2011.

    Google Scholar 

  3. Food and Drug Administration. FDA acts to provide better information to consumers on trans fats, 2005. http://www.fda.gov/oc/initiatives/transfat/. Cited January 9, 2020.

  4. Mozaffarian, D., Katan, M.B., Ascherio, A., Stampfer, M.J., and Willett, W.C., N. Engl. J. Med., 2006, vol. 354, no. 15, pp. 1601–1613. https://www.nejm.org/ doi/full/10.1056/NEJMra054035

    Article  CAS  Google Scholar 

  5. Brouwer, I.A., Wanders, A.J., and Katan, M.B., PLoS One, 2010, vol. 5, no. 3, p. e9434. https://doi.org/10.1371/journal.pone.0009434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cepeda, E.A. and Calvo, B., J. Food Eng., 2008, vol. 89, no. 4, pp. 370–374. https://doi.org/10.1016/j.jfoodeng.2008.01.012

    Article  CAS  Google Scholar 

  7. Alsobaai, A.M., Al Shaibani, A.M., Moustafa, T., and Yaakobd, Z., Arabian J. Sci. Eng., 2013, vol. 38, no. 9, pp. 2273–2278. https://doi.org/10.1007/s13369-013-0558-5

    Article  Google Scholar 

  8. US Patent 6391815, 2002.

  9. Anwar, F., Kazi, T.G., Jakharani, M.A., Sultana, R., and Sahito, S.R., J. Chem. Soc. Pak., 2003, vol. 25, no. 3, pp. 210–214.

    CAS  Google Scholar 

  10. Savchenko, V.I. and Makaryan, I.A., Platinum Met. Rev., 1999, vol. 43, no. 2, pp. 74–82.

    CAS  Google Scholar 

  11. Fernández, M.B., Sánchez, J.F.M., Tonetto, G.M., and Damiani, D.E., Chem. Eng. J., 2009, vol. 155, no. 3, pp. 941–949. https://doi.org/10.1016/j.cej.2009.09.037

  12. McArdle, S., Girish, S., Leahy, J.J., and Curtin, T., J. Mol. Catal. A: Chem., 2011, vol. 351, pp. 179–187. https://doi.org/10.1016/j.molcata.2011.10.004

    Article  CAS  Google Scholar 

  13. Nohair, B., Especel, C., Marécot, P., Montassier, C., Hoang, L.C., and Barbier, J., C. R. Chim., 2004, vol. 7, no. 2, pp. 113–118. https://doi.org/10.1016/j.crci.2003.10.012

    Article  CAS  Google Scholar 

  14. Nasima, C., Safia, H., Joseph, A., and Khaled, B., Can. J. Chem. Eng., 2012, vol. 90, no. 1, pp. 41–50. https://doi.org/10.1002/cjce.20672

    Article  CAS  Google Scholar 

  15. Alshaibani, A.M., Yaakob, Z., Alsobaai, A.M., and Sahri, M., Braz. J. Chem. Eng., 2014, vol. 31, no. 1, pp. 69–78. https://doi.org/10.1590/S0104-66322014000100008

    Article  CAS  Google Scholar 

  16. Simakova, I.L., Simakova, O.A., Romanenko, A.V., and Murzin, D.Yu., Ind. Eng. Chem. Res., 2008, vol. 47, no. 19, pp. 7219–7225. https://doi.org/10.1021/ie800663j

    Article  CAS  Google Scholar 

  17. Belkacemi, K., Kemache, N., Hamoudi, S., and Arul, J., Int. J. Chem. React. Eng., 2007, vol. 5, no. 1, pp. 1–25. https://doi.org/10.2202/1542-6580.1528

    Article  Google Scholar 

  18. Fernández, M.B., Piqueras, C.M., Tonetto, G.M., Crapiste, G., and Damiani, D.E., J. Mol. Catal. A: Chem., 2005, vol. 233, nos. 1–2, pp. 133–139. https://doi.org/10.1016/j.molcata.2005.02.012

  19. Qiu, Y., Xu, X., and Gao, L., React. Kinet., Mech. Catal., 2005, vol. 85, no. 2, pp. 223–229. https://doi.org/10.1007/s11144-005-0264-8

    Article  CAS  Google Scholar 

  20. Yemİșçİoğlu, F., Bayaz, M., and Gümüșkesen, A.S., GIDA-J.Food, 2010, vol. 35, no. 1, pp. 13–19.

  21. Berben, P.H., Blom, P.J.W., and Sollie, J.C., in Practical Short Course Series: Vegetable Oils Processing and Modification Techniques, College Station, TX: Texas A&M Univ, 2000.

    Google Scholar 

  22. Toshtay, K., Auyezov, A.B., Bizhanov, Zh.A., Yera-liyeva, A.T., Toktasinov, S.K., Kudaibergen, B., and Nurakyshev, A., Eurasian Chem.-Technol. J., 2015, vol. 17, no. 1, pp. 33–39. https://doi.org/10.18321/ectj192

    Article  CAS  Google Scholar 

  23. GOST R (State Standard) 52677–2006: Vegetable Oils, Animal Fats and Products of Their Processing. Methods for Determination of the Content of Trans Fatty Acid Isomers, 2006.

  24. GOST (State Standard) 31665–2012: Vegetable Oils and Animal Fats. Preparation of Methyl Esters of Fatty Acids, 2012.

  25. GOST R ISO (State Standard) 3961–2010: Animal and Vegetable Fats and Oils. Determination of Iodine Value, 2010.

  26. GOST R (State Standard) 51445–99: Animal Fats and Oils. Method for Determination of Refractive Index, 1999.

  27. GOST R (State Standard) 52179–2003: Margarines, Cooking Fats, Fats for Confectionery, Baking, and Dairy Industry. Sampling Rules and Methods of Control, 2003.

  28. GOST R (State Standard) 53158–2008: Animal and Vegetable Fats and Oils and Their Derivates. Determination of Solid Fat Content. Pulsed Nuclear Magnetic Resonance Method, 2008.

  29. Condon, J.B., Surface Area and Porosity Determinations by Physisorption: Measurements and Theory, Amsterdam: Elsevier, 2006.

    Google Scholar 

  30. Coenen, J.W.E., Ind. Eng. Chem. Fundam., 1986, vol. 25, no. 1, pp. 43–52. https://doi.org/10.1021/i100021a006

    Article  CAS  Google Scholar 

  31. Abdullina, R.M., Voropaev, I.N., Romanenko, A.V., Chumachenko, V.A., Noskov, A.S., and Mashnin, A.S., Russ. J. Appl. Chem., 2012, vol. 85, no. 8, pp. 1204–1211. https://doi.org/10.1134/S1070427212080125

    Article  CAS  Google Scholar 

  32. Coenen, J.W.E., J. Am. Oil Chem. Soc., 1976, vol. 53, no. 6, part 2, pp. 382–389. https://doi.org/10.1007/BF02605727

  33. Veldsink, J.W., Bouma, M.J., Schöön, N.H., Beena-ckers, A.A.C.M., Catal. Rev., 1997, vol. 39, no. 3, pp. 253–318. https://doi.org/10.1080/01614949709353778

    Article  CAS  Google Scholar 

  34. Mondal, K. and Lalvani, S.B., J. Am. Oil Chem. Soc., 2003, vol. 80, no. 11, pp. 1135–1141. https://doi.org/10.1007/s11746-003-0832-8

    Article  CAS  Google Scholar 

  35. Drozdowski, B. and Szukalska, E., Eur. J. Lipid Sci. Technol., 2000, vol. 102, no. 10, pp. 642–645. https://doi.org/10.1002/1438-9312(200010)102:10<642::AID-EJLT642>3.0.CO;2-I

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the RK Ministry of Agriculture, project no. BR06249228.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Toshtay.

Additional information

Translated by K. Gumerov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toshtay, K., Auezov, A.B. Hydrogenation of Vegetable Oils over a Palladium Catalyst Supported on Activated Diatomite. Catal. Ind. 12, 7–15 (2020). https://doi.org/10.1134/S2070050420010109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050420010109

Keywords:

Navigation