Skip to main content
Log in

Evolution of active ingredients and catalytic properties of Pt-Sn/Al2O3 catalysts in the selective deoxygenation reaction of vegetable oils

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The evolution of the structure of Pt–Sn/Al2O3 catalysts and their catalytic properties in the reaction of the reductive deoxygenation of rapeseed oil fatty acid triglycerides (FATGs) have been studied. The catalysts were prepared by deposition from an organic solution of a mixture of platinum and tin compounds, as well as a heterometallic (PPh4)3[Pt(SnCl3)5] complex, in which platinum and tin atoms are linked by a metal–metal bond. It has been shown that the use of the heterometallic complex as a precursor with a tin to platinum molar ratio of 5 results in the formation of clusters of nanosized tin (2+; 4+) oxides and particles of a metastable PtSn3 ± δ alloy on the surface of the catalyst after reductive activation. In the presence of this catalyst, the exhaustive conversion of the feed FATGs and the selectivity for hydrocarbons above 98% have been achieved. The gaseous products CO, CO2, and CH4 are formed in trace quantities. The results show that the deoxygenation occurs not via the known decarboxylation and decarbonylation route, but also through the step of the selective reduction of oxygen and almost complete suppression of cracking of the organic moieties of FATGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Demirbas, Biodiesel: A Realistic Fuel Alternative for Diesel Engines (Springer, London, 2008).

    Google Scholar 

  2. J. Holmgren, C. Gosling, R. Marinangeli, et al., UOP Report AM-07-11 (2007).

    Google Scholar 

  3. A. Vonortas and N. Papayannakos, WIREs Energy Environ. 3, 3 (2014).

    Article  CAS  Google Scholar 

  4. H. Wang, H. A. Pham, W. E. Rathbun, and P. P. Adams, WO Patent No. 2013 089 871; US Patent No. 20130158890 (2013).

    Google Scholar 

  5. J. Mikulec, J. Cvengros, L. Joriková, et al., Chem. Ing. Trans. 18, 475 (2009).

    Google Scholar 

  6. S. Kovács, L. Boda, L. Leveles, et al., Chem. Ing. Trans. 21, 1321 (2010).

    Google Scholar 

  7. J. H. Sinfelt, Catalysis Science and Technology, Ed. by G. R. Anderson and M. Boudard (Springer, Heidelberg, 1981), Vol. 1, p. 257.

  8. J. Beltramini and D. L. Trimm, Appl. Catal. 31, 113 (1987).

    Article  CAS  Google Scholar 

  9. C. N. Satterfield, Heterogeneous Catalysis in Practice (McGraw-Hill, New York, 1982).

    Google Scholar 

  10. V. Galvita, G. Siddiqi, P. P. Sun, and A. T. Bell, J. Catal. 271, 209 (2010).

    Article  CAS  Google Scholar 

  11. A. Iglesias-Juez, A. M. Beale, K. Maaijen, et al., J. Catal. 276, 268 (2010).

    Article  CAS  Google Scholar 

  12. A. Vazquez-Zavala, A. Ostoa-Montes, D. Acosta, and A. Gómez-Cortés, Appl. Surf. Sci. 136, 62 (1998).

    Article  CAS  Google Scholar 

  13. X. Liu, W. Z. Lang, L. L. Long, et al., Chem. Eng. J. 247, 183 (2014).

    Article  CAS  Google Scholar 

  14. A. V. Chistyakov, P. A. Zharova, M. V. Tsodikov, et al., Dokl. Chem. 460, 26 (2015).

    Article  CAS  Google Scholar 

  15. M. V. Tsodikov, A. V. Chistyakov, M. A. Gubanov, et al., Izv. Akad. Nauk, Ser. Khim., No. 9, 2062 (2015).

    Google Scholar 

  16. S. S. Shapovalov, A. A. Pasynskii, Yu. V. Torubaev, et al., Russ. J. Coord. Chem. 40, 131 (2014).

    Article  CAS  Google Scholar 

  17. I. É. Beck, V. V. Kriventsov, D. P. Ivanov, et al., J. Struct. Chem. 51 (7), S11 (2010).

    Article  Google Scholar 

  18. I. É. Beck, V. I. Bukhtiyarov, I. Yu. Pakharukov, et al., J. Catal. 268, 60 (2009).

    Article  CAS  Google Scholar 

  19. I. E. Beck, V. V. Kriventsov, D. P. Ivanov, et al., Nucl. Instrum. Methods Phys. Res. A 603, 108 (2009).

    Article  CAS  Google Scholar 

  20. A. V. Naumkin, A. Kraut-Vass, S. W. Gaarenstroom, and C. J. Powell, NIST X-ray Photoelectron Spectroscopy Database. Version 4.1 (National Institute of Standards and Technology, Gaithersburg, 2012). http://srdata.nist.gov/xps/.

    Google Scholar 

  21. V. Larchev and S. Popova, Inorg. Mater. 20, 693 (1984).

    Google Scholar 

  22. A. Ramstad, F. Strisland, S. Raaen, et al., Surf. Sci. 425, 57 (1999).

    Article  CAS  Google Scholar 

  23. N. Nava, P. Angel, J. Salmones, E. Baggio-Saitovitch, P. Santiago, Appl. Surf. Sci. 253, 9215 (2007).

    Article  CAS  Google Scholar 

  24. J. Llorca, N. Homs, J. León, et al., Appl. Catal., A 189, 77 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Chistyakov.

Additional information

Original Russian Text © A.V. Chistyakov, V.V. Kriventsov, A.V. Naumkin, A. Yu. Pereyaslavtsev, P.A. Zharova, M.V. Tsodikov, 2016, published in Neftekhimiya, 2016, Vol. 56, No. 4, pp. 375–383.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chistyakov, A.V., Kriventsov, V.V., Naumkin, A.V. et al. Evolution of active ingredients and catalytic properties of Pt-Sn/Al2O3 catalysts in the selective deoxygenation reaction of vegetable oils. Pet. Chem. 56, 607–615 (2016). https://doi.org/10.1134/S0965544116070045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544116070045

Keywords

Navigation